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Abstract. This paper describes an approach to the definition of se-
mantic annotations using the notion of an abstract syntax, which char-
acterizes the content of well-formed annotations in set-theoretical terms,
independent of any particular representation format. Most importantly, a
formal semantics is defined for the structures generated by the abstract
syntax; this semantics is inherited by any representation format. This
approach is applied in a redefinition of the ISO-TimeML language for
annotating time and event-related information, developed by the Inter-
national Organization for Standardization ISO. The semantics of the pro-
posed abstract syntax of ISO-TimeML has the form of a compositional
translation into discourse representation structures. The separation be-
tween an abstract syntax with a semantics, and a concrete syntax which
defines a particular representation format, is shown to allow the design
of semantically well-defined annotations which are optimally simple and
transparent.

1 Introduction

The definition of standards for the annotation of language resources has in re-
cent years become a focal area of interest in the International Organization for
Standardization ISO. Researchers and developers in computational linguistics
and language technology have realized that, while the availability of annotated
corpora is more important for the development of the field and its applications
than ever, the current state of affairs is far from ideal in that different researchers
use different formats and concepts in their annotations, making the exploitation
and effective sharing of annotated material from different sources very difficult.
The ISO organization has therefore assembled expert groups in various areas of
language technology and computational linguistics in order to develop interna-
tional standards, e.g. for morphosyntactic annotation, for syntactic annotation,
for the representation of lexical content, and for semantic annotation. Moreover,
standards have been established for the definition of descriptive concepts (‘data
categories’, as defined in ISO standard 12620); for the use of feature structures
for expressing linguistic and other information (ISO standard 24610), and for
linguistic annotation efforts in general in the Linguistic Annotation Framework
(Ide & Romary, 2004; ISO 24612:2011).



In the area of semantic annotation, the project Semantic Annotation Frame-
work (ISO 24617) has been launched, which consists of several parts dealing
with standards for annotating different kinds of semantic information. Part 1:
Time and events, deals with the annotation of information related to time and
events, and has defined a standard (ISO 24617-1) which is based on TimeML
(Pustejovsky et al., 2005; 2007). Part 2: Dialogue acts deals with the annotation
of recorded dialogues with dialogue act information, and has defined standard
ISO 24617-2. Other parts deal with the annotation of semantic roles, discourse
relations, named entities, and spatial information.

For semantic annotation, standards have to comply with two methodolog-
ical requirements which do not necessarily apply to other areas of annotation
standardization. First, since semantic annotations are meant to capture some of
the meaning of the annotated text, if the annotations don’t have a well-defined
meaning, then how can they capture any meaning in a better way than the text
itself? Bunt & Romary (2002) have therefore formulated the requirement of se-
mantic adequacy, which says that a language for semantic annotation is required
to have a well-defined semantics.

A second requirement comes from the Linguistic Annotation Framework,which
distinguishes between the concepts of annotation and representation. The term
‘annotation’ refers to the linguistic information that is added to segments of lan-
guage data, independent of the format in which the information is represented.
The term ‘representation’ refers to the format in which an annotation is rendered,
for instance in XML, independent of its content. According to the Linguistic An-
notation Framework, annotations are the proper level of standardization, rather
than representations.

In order to deal with the first requirement, the annotation languages de-
fined within the Semantic Annotation Framework have a formal semantics as
part of their definition. This is not as simple and obvious as it may sound; for
instance, the representation language for annotating text with time-and event-
related information defined within this framework, called ‘ISO-TimeML’ because
it descends from TimeML, is a particular form of XML, and as such does not
come with a semantics.

To deal with the second requirement, we have proposed (Bunt, 2010) to
introduce an additional component in the definition of an annotation language,
besides the specification of (a) a representation format and (b) a semantics for
that, which specifies the categories of information that can be used to build
semantic annotations, and their possible combinations as annotation structures.
This additional component is called an abstract syntax; the specification of a
representation of annotation structures is called a concrete syntax. So a complete
specification of a semantic annotation language consists of three components: an
abstract syntax, a concrete syntax, and a semantics. This proposal has been
adopted in the design of ISO-TimeML, the specification of which has these three
components (see ISO 24617-1:2011).

Parallel to the submission of ISO-TimeML to the international community
as a proposed annotation standard, we have continued to further develop the



three-component approach. First, we have designed a semantics for the abstract,
rather than the concrete syntax. This has the great advantage that any concrete
syntax which specifies a way of representing the annotation structures defined
by the abstract syntax, inherits the same semantics. This provides a basis for
proving that alternative representation formats are semantically equivalent, and
hence convertible from one to another. Second, this development has brought to
light that the concrete syntax defined in (ISO, 2009) is far from ideal, not being
able to express all the distinctions that are made in the abstract syntax, and we
developed the notion of an ideal concrete syntax.

In this paper we present this further development, and illustrate it for the
annotation and representation of information relating to time and events. In Sec-
tion 2 we characterize the information about time and events that ISO-TimeML
aims to capture in annotations. In Section 3 we (re-)define the abstract syntax
and formal semantics of ISO-TimeML. In Section 4 we introduce the notion of
an ‘ideal’ representation format, and define an ideal XML representation for the
structures generated by the abstract syntax. Section 5 describes the application
of the ideal XML representations to ISO-TimeML annotations, and shows their
interpretation defined by semantics of the abstract syntax. We show how this
leads to semantically well-defined and well-motivated representations which are
optimally simple and transparent. We end with concluding remarks in Section
6.

2 Information about Time and Events

2.1 Coverage

When designing an annotation language, the first question is what information
the language should be able to capture. Using the terminology of the Linguistic
Annotation Framework, mentioned above, this decision is crucial for defining the
set of possible annotations, independent of any representational formats.

ISO-TimeML is meant to allow annotators (human or machine) to assign
semantic mark-ups to the following kinds of expressions:

– expressions denoting an event, state, or a process, such as “he woke up”;
“Mary was asleep”, “I will make breakfast” but also “the inauguration”;
“the political situation”; “the melting of the ice caps”;

– expressions relating events (and states, and processes) to aspectually re-
lated or subordinate events (and states, and processes), as in “she started to
laugh”; “she stopped crying”; “she wanted to eat something”;

– temporal expressions, describing dates, times, particular periods, and so
on, like “February 29 2009”; “ten o’clock tomorrow morning”; “Christmas
1999”; “the twenty-first century”; “yesterday”;

– expressions that indicate relations between temporal entities, such as at,
before, during, for as in: at midnight; two days before Christmas; during the
weekend; for two years;



– expressions denoting an extent of time, such as “ten seconds”; “five minutes”;
“two and a half years”;

– expressions describing the frequency of a recurring event, such as “four times
last week”; “twice a day”;

– expressions relating events (and states, and processes) to temporal objects,
as in “John woke up at six fifteen”; “this Tuesday’s inauguration”; “he slept
from nine to five”; “he slept eight hours”; “he called three times today”.

2.2 Basic temporal and event-related concepts

In the literature a distinction is often made between ‘states’ and ‘events’, where
the latter are characterized as occurring at a point in time or during a cer-
tain definite interval, while the former may obtain for any indefinite stretch of
time (“The Mediterranean Sea separates Europe from Africa”). For linguistic and
philosophical reasons, several classifications have been proposed of verbs describ-
ing various types of states or events, the Vendler classification being the best
known (Vendler, 1967). For the annotation of temporal information in text, not
only verbs with their tenses and temporal modifications should be considered,
but also nouns, since nouns may also denote events and situations (“the meet-
ing at twelve”; “the six o’clock news”). Terminological note: the term ‘event’ will
henceforth be used as a generic term that also covers such notions as ‘state’, ‘sit-
uation’, ‘action’, ‘process’, etc.; this broad notion of event has also been termed
‘eventuality’ (Bach, 1986).

Temporal objects and relations have been studied from logical and ontological
points of view; well-known studies include those by Allen (1984), Prior (1967),
and more recently Hobbs and Pan (2004); see also the collection of papers in
Mani et al. (2005). The most common view of time, that underlies most natural
languages, is that time is an unbounded linear space running from a metaphorical
‘beginning of time’ at minus infinity to an equally metaphorical ‘end of time’ at
plus infinity. This linear space can be represented as a straight line, the ‘time
line’, of which the points correspond to moments in time. Following Hobbs &
Pan (2004) we will also use the term ‘instant’ to refer to points of time.

In reality nothing happens in infinitesimally small time; every event or state
that occurs in reality (or in someone’s mind, for that matter) requires more than
zero time, although natural languages offer speakers the possibility to express
themselves as if something occurs at a precise instant (like “I will call you at
twelve o’clock sharp”). Since instants are formally a special kind of interval, a
consistent approach to modelling the time that an event occurs is to always use
intervals, where it may happen that the interval associated with a particular
event is regarded as having zero length, and thus being an instant.

Temporal intervals have a length which can also occur in natural language
in relation to an event, as in “I used twelve hours to read that book”; “It takes
six and a half minutes to walk to the station”; or “The time difference between
Amsterdam and Denver is eight hours”. An expression like “six and a half min-
utes” denotes the length of a time interval or the accumulated length of a series
of intervals. It is the temporal equivalent of spatial distance (6.5 kilometres).



To describe the length of a temporal interval one needs a unit of measurement,
which may be combined with a numerical expression to obtain an amount of
time.

Regarding the temporal anchoring of events in time, it may be noted that the
association of a temporal interval with an event does not necessarily mean that
the event took place during every moment within that interval. When someone
says “I’ve been working on this article from 8.30 to 12 o’clock”, that presumably
does not mean that the speaker has been working on his article every single
moment between 8.30 and 12 o’clock; there must have been interruptions for
having some coffee, going to the bathroom, and so on. Whether an event occurs
during an interval with or without any interruptions can only be decided on a
case by case basis, and is perhaps best modeled as a property of the temporal
anchoring relation applied to a specific event token.

2.3 Anchoring annotations to primary text

The Linguistic Annotation Framework, mentioned above, insists on the use of
stand-off annotation, i.e. the construction of annotations in separate files, sep-
arate from the document containing the primary language data, as contrasted
with in-line (or ‘embedded’) annotation. Stand-off annotations refer to specific
locations in the primary data by addressing byte offsets, linguistic elements such
as words, or times associated with recorded data. Compared to in-line annota-
tion, stand-off annotation has the advantages of respecting the integrity of the
primary data and of allowing multiple annotations to be layered over a given pri-
mary document. Since semantic annotations typically occur at a relatively high
level in a layered annotation structure, they do not necessarily refer directly
to segments in the primary data, but rather to structures in other annotation
layers. The generic term markable is used to refer to the entities that the anno-
tations are associated with. Markables are for instance elements in a syntactic
or in a morphosyntactic annotation layer; a requirement on markables is that
they identify certain tokens in the source text to which they apply. In this paper
we will assume that markables are identified by a target attribute whose values
refer to source text tokens.

Markables are derived from documents, which will have certain metadata that
are important for the interpretation of temporal annotations. For interpreting
the tenses of verb forms, or adverbial temporal deixis (“last night”; “next week”),
for instance, which occur in a text, one must know when the text was produced.
This will often be defined by the document creation time, and more precisely
by the combination of a creation time and a creation location, since the latter
defines the time zone within which the creation time is precisely defined. In
many documents the time and place of the document creation will apply to all
the markables that may be derived from the document, but it may also happen
that the text in a document introduces other times and places relative to which
the annotations of certain markables should be understood. A time zone, like
Greenwich Meat Time (GMT) can be seen as a way of mapping the time line to
dates and clock times.



3 An abstract syntax and semantics for ISO-TimeML

3.1 Annotation and representation

The distinction between annotations and representations, made in the Linguistic
Annotation Framework, is reflected in the specification of ISO-TimeML given
below in the distinction between an abstract syntax and a concrete syntax. The
abstract syntax specifies the types of elements and their possible combinations
in the construction of annotations, defined as set-theoretical structures, inde-
pendent of any particular representation format.

Annotations, as defined by the abstract syntax, can be represented in many
ways. In line with other ISO standards for language resources, the ISO-TimeML
proposal includes a concrete syntax defining a reference representation in XML.

In the rest of this section we present the abstract syntax of a revised spec-
ification of ISO-TimeML (Section 3.2), and the semantics of the annotation
structures defined by the abstract syntax (Section 4.3).

3.2 Abstract syntax

The abstract syntax consists of two parts: (a) a specification of the elements
from which the annotations are built up, called a conceptual inventory, and (b) a
description of the possible combinations of these elements into annotation struc-
tures. What these combinations mean is specified by the semantics associated
with the abstract syntax.

a. Conceptual inventory
The concepts which can be used to build ISO-TimeML annotations fall into five
categories, all formed by finite sets of temporal and event-related entities and re-
lations, plus the concepts of real number and natural number. Natural numbers
are needed for capturing the information expressed in English by “twice” and
“three times”; real numbers are needed for dealing with expressions denoting
amounts of time, such as “two and a half hours”.

The categories of temporal and event-related entities and relations are the fol-
lowing:

– finite sets of elements called ‘event predicates’; ‘tenses’; ‘aspects’; ‘polarities’;
and ‘set-theoretic types’;

– finite sets of elements called ‘unary temporal predicates’, ‘temporal rela-
tions’, ‘duration relations’; ‘numerical relations’; ‘event subordination rela-
tions’; and ‘aspectual relations’;

– a finite set of elements called ‘time zones’;
– finite sets of elements called ‘calendar years’, ‘calendar months’ (with 12 ele-

ments), ‘calendar weeks’ (52 elements),‘calendar day numbers’ (31 elements);
‘day names’ (7 elements); and ‘clock times’ (24 × 60 elements);

– a finite set of elements called ‘temporal units’.



b. Annotation structures
Annotation structures in ISO-TimeML consist of two kinds of elements, which
we will refer to as entity structures and link structures. Entity structures contain
semantic information about a segment of source text; link structures describe
semantic relations between segments of source text by means of links between
entity structures.

An entity structure is a pair <m, a> consisting of a markable m and an
annotation a. A link structure is a triple <e1, e2, r> consisting of two entity
structures and a relational element. Annotation structures consist of a set of
entity structures and a set of link structures which link the entity structures
together; in ISO-TimeML these links correspond to temporal and inter-event
relations.

Entity structures:
Entity structures <m, a> come in five varieties, depending on the kind of annota-
tion that forms the second component. This component may contain information
about (1) events; (2) dates; (3) time intervals; (4) time points (or ‘instants’, us-
ing the terminology of OWL-Time (Hobbs & Pan, 2004)); and (5) amounts of
time).

(1) 1. An event structure is a n-tuple, with 1 ≤ n ≤ 6; for n = 6 this is a tuple
< e, t, a, σ, k, v > where e is a member of the set of event predicates; t
and a are a tense and an aspect, respectively; σ is a set-theoretical type
(such as individual object or set of individual objects); k is a natural
number (e.g. the number 2 for dealing with such examples as “John
kissed Mary twice”); and V is a polarity.

2. A date structure is any of the following structures:
(a) a triple <calendar year, calendar month, calendar day number>;
(b) a pair <calendar year, calendar month>;
(c) a pair <calendar month, calendar day number>;
(d) a pair <calendar week, calendar day number or day name>;
(e) a single calendar year, calendar month, or calendar week (for things

like “week 35”);
3. An instant structure is either (a) a triple <time zone, date structure,

clock time>, or (b) a triple <time-amount structure, instant structure,
temporal relation> (“half an hour before midnight”);

4. The following set-theoretical structures are interval structures:
(a) a unary temporal predicate that names a particular period in history,

like “(the) Golden Age”, “(the) Renaissance”, or that characterizes
a certain type of period, like “decade”, “century” (and thus identifies
a class of intervals rather than a single interval);

(b) a triple consisting of a unary temporal predicate that names an annu-
ally recurring event, like “Easter”, “Carnaval”, “Ramadan”, “New
Year’s Eve”, a year and a time zone;

(c) a pair <t1, t2> of two instant structures, corresponding to the be-
ginning and end points of the interval;



(d) a triple<time-amount structure, interval structure, temporal relation>
(“three weeks before Christmas”; “two years from today”);

5. A time-amount structure is a pair <n, u>, where n is a real number and
u a temporal unit, or a triple <R,n, u>, where R is a numerical relation
(“less then two milliseconds”).

Link structures:
There are seven types of link structures in ISO-TimeML: (1) for anchoring events
in time; (2) for temporally relating one event to another; (3) for relating intervals
and instants to each other; (4) for measuring the duration of an event; (5) for
measuring the length of a temporal interval (not necessarily related to an event);
(6) for subordination relations between events; and (7) for aspectual relations
between events.

(2) 1. A temporal anchoring structure is a triple consisting of an event struc-
ture, a temporal anchoring relation, and an interval structure, instant
structure, or date structure;

2. An event-temporal relation structure is a triple <event structure, event
structure, temporal relation>;

3. A temporal relation structure is a triple <interval or instant or date
structure, interval or instant or date structure, temporal relation>

4. An event-duration structure is a pair <event structure, time-amount
structure>;

5. An interval length measurement structure is a pair <interval structure,
time-amount structure>;

6. A subordination structure is a triple <event structure, event structure,
subordination relation>;

7. An aspectual structure is a triple <event structure, event structure, as-
pectual relation>.

Annotation structures:
An ISO-TimeML annotation structure is a set of one or more entity structures
and zero or more link structures.

3.3 Semantics

3.3.1 Outline
We define a semantics for ISO-TimeML which specifies the meaning of annota-
tion structures through a mapping into the language of discourse representation
structures (DRSs). This language is the semantic representation language of
Discourse Representation Theory (DRT; Kamp & Reyle, 1993), and is known to
be logically equivalent to first-order logic, but to have advantages for composi-
tional and incremental construction of its representations from natural language
expressions.

Before presenting the details of this semantics, we outline how it works for a
simple example. Consider the sentence:



(3) John started to read at midnight.

Using self-explanatory names for elements from the conceptual inventory, the
annotation structure for this sentence would be as follows. Annotation of the
two events that the text refers to, a start event and a read event, gives rise to
two entity structures ε1 and ε2 of the type of event structures, which according
to (1.1) are n-tuples indicating an event type and, optionally, a tense, an aspect,
a signature, a cardinality, and a polarity. In this case both events are considered
as single, individual events with positive polarity. The read event is tenseless.
The annotation structures are thus as follows, where m1 is a markable that refers
to the segment started, and m2 a markable referring to the segment to read:

(4) ε1: <m1, <start, past, individual, 1, positive>>
ε2: <m2, <read, notense, individual, 1, positive>>

The annotation structure for the time of the start event is an entity structure of
the type ‘instant’, which according to (1.2a) is a triple consisting of a time zone,
a date, and a clock time. In this case let us assume that from the context the
time zone is known to be Greenwich Mean Time and that the precise date is not
known but is known to fall in January 2011. This leads to the entity structure (5),
where lack of knowledge about the day of the month is indicated by omitting the
corresponding element. An important point to note here is that annotations may
in general be incomplete. According to definition (1) every entity structure is an
n-tuple for some particular value of n (between 2 and 6); in all cases k-tuples
with 0 ≤ k ≤ n are incomplete but well-formed entity structures.

(5) ε3 : <m3, <GMT, <2011, january>, 24:00>>

The markable m3 refers to the source text segment “at midnight”, and the clock
time is assumed to be taken relative to Greenwich Mean Time.

The two events are linked through an aspectual relation (‘initiates’), and
the start event is temporally anchored at the time that is mentioned. This is
annotated by means of the link structures L1 and L2:

(6) L1 : <ε1, e2, initiates>
L2 : <ε1, e3, at>

The annotation structure as a whole is the set

(7) A = {e1, e2, e3, L1, L2}

The semantics of this annotation structure can be computed by mapping
its components into the small DRSs shown in (8), and merging these into one
comprehensive DRS (9).1

1 A DRS is formally a pair consisting of a set of variables, called ‘discourse mark-
ers’, and a set of propositions, called ‘conditions’. It is common practice to represent
DRSs in graphical form as ‘boxes’ of the kind shown in (8). For example, the box rep-
resenting event structure e1 is formally the pair 〈{e1}, {start(e1), past(e1)}〉. In the
rest of this paper we will occasionally use the box notation for its better readability,
but we will also use the string notation in order to save space.



(8) a.

e1

start(e1)
past(e1)

b.
e2

read(e2)

c.

t1

calyear(t1,GMT) = 2011
calmonth(t1,GMT) = january
clocktime(t1,GMT) = 24:00

d.

e3 e4 x1, t2

theme(e3, e4)
event-time(e3) = t2
begin(event-time(e4)) = t2
agent(e3, x1)
agent(e4, x1)

e.
e5 t3

event-time(e5) = t3

The information in the link structure L1, which describes how the two events
are related to each other, is expressed in the corresponding DRS by means of a
semantic relation (‘theme’) between the two events, plus conditions expressing
that the started event begins at the time of the start event, and that both
events are performed by the same agent. Merging these five DRSs results in the
following DRS:

(9)

e1 e2 x1 t1

start(e1)
past(e1)
read(e2)
theme(e1, e2)
calyear(t1,GMT) = 2011
calmonth(t1,GMT) = january
clocktime(t1) = 24:00
event-time(e1) = t2
begin(event-time(e2)) = t2
agent(e1, x1)
agent(e2, x1)



This DRS does indeed express what the annotation means, and is logically equiv-
alent to the first-order formula (10):

(10) ∃e1.∃e2.∃x1.∃t1. start(e1) ∧ past(e1) ∧ read(e2) ∧ theme (e1, e2) ∧
calyear(t1gmt)=2011 ∧ calmonth(t1,gmt)= january ∧ event-time(e1) = t2
∧ begin(event-time(e2)) = t2 ∧ agent(e1, x1) ∧ agent(e2, x1)

3.3.2 Keeping track of source text anchoring
The example in the previous subsection might suggest that annotation struc-
tures can be interpreted simply by translating the component entity and link
structures into DRSs and merging these. That’s not true in general, however, as
the following example shows.

(11) John started to read at midnight. He enjoyed it.

The annotation structure for this text is identical to that of (3), except for the
additional entity structure (12a) for the enjoy-event (with markable m3 referring
to the segment enjoyed, with DRS-interpretation (12b).2

(12) a. ε4: <m3,<enjoy, past, individual, 1, positive>>

b.

e5

enjoy(e5)
past(e5)

The DRSs (8) and (12b) can be merged with various possibilities for unifying
the variables, one being the case where the discourse referent e4 in the DRS for
L1 is unified with the referent e5 in (12b), which would lead to the following
DRS for the entire annotation structure:

(13)

e1 e2 e3 x1 t1

start(e1)
past(e1)
read(e2)
enjoy(e3)
theme(e1, e3)
clockttime(t1) = 24:00
event-time(e1) = t1
begin(event-time(e3)) = t1
agent(e1, x1)
agent(e3, x1)

2 The values ‘individual’, ‘1’, and positive’ are all default values, which do not require
explicit representation in a DRS.



This DRS is an incorrect interpretation of the annotation structure consisting
of (8) and (12b), since it indicates an aspectual relation between the start event
and the enjoy event, rather than between the start event and the read event.
This interpretation is technically possible because the DRSs (8) and (12b) do
not contain information about the segments of source text that they apply to;
in that respect they have less information than the annotation structures. In
particular, the L1 link structure contains the entity structures e1 and e2, which
refer to particular source text tokens, but the DRS for L1 just says that there
are two events, one initiating the other, without referring to the specific start,
read and enjoy events mentioned in the source text, and as such this DRS does
not really capture the linking information which the annotation link structure
contains. The same goes for the temporal anchoring link structure. (So in fact
the DRSs in (8) and (12b) could be merged in even weirder ways than (13).)

The phenomenon that markable-related information gets lost when translat-
ing annotation structure components into logical representations caused Bunt
(2007) to propose a complicated way of keeping track of the identifiers of anno-
tation structure components, when interpreting annotation structures through
their translation into into first-order logic. Other attempts to provide a formal
semantics for ISO-TimeML have also run into this problem; see Katz (2007) and
Pratt-Hartmann (2007), and Lee (2008), who adopted the solution proposed by
Bunt (2007).

In this paper we propose a simple solution, which consists of including the
information about the relation to markables into the DRSs which interpret them.
To this end we introduce a function ‘anchor’ which specifies the markable that
the annotation structure applies to. For example, for the interpretation of the
entity structures for the start and read events this leads to the following DRSs:

(14) a.

e1

anchor(e1) = m1
start(e1)
past(e1)

b.

e2

anchor(e2) = m2
read(e2)

For the link structure L1 this leads to the DRS (15):



(15)

e3 e4 x1, t2

anchor(e3) = m1
anchor(e4) = m2
agent(e3, x1)
agent(e4, x1)
theme(e3, e4)
event-time(e3) = t2
begin(event-time(e4)) = t2

By including the markable information not only in link structure interpretations
but also in the interpretations of entity structures, the merging of the DRSs
enforces the correct unification of the discourse referents and the generation of
the intended interpretation. In the next subsection we will see exactly how this
is accomplished in a systematic way.

3.3.3. Interpretation function
An interpretation function Ia is defined as a mapping from abstract annota-
tion structures to discourse representation structures. Clause (16) recursively
defines the interpretation of the components of annotation structures: elements
of the conceptual inventory, entity structures, and link structures. After that we
will turn to the interpretation of complete annotation structures, consisting of
multiple entity and link structures.

(16) 1. Elements from the conceptual inventory:
The interpretation function Ia assigns an individual, a predicate, a function,
or a number to the following elements of the conceptual inventory, where,
in the interest of readability, we will indicate the interpretation Ia(αi) of an
element αi of the conceptual inventory as α′

i:
- event predicates ei, tenses tj , and aspects am;
- temporal names (predicates like ‘Golden Age’, ‘Independence Day’), tem-

poral relations, duration relations, numerical relations, event subordina-
tion relations, and aspectual relations;

- temporal measurement functions; calendar functions (i.e. functions which
for a given time zone assign to an instant its calendar month, calendar
year, calendar week (number), calendar day number, or day name; and
a clock time function, which for a given time zone assigns to an instant
its time on the clock;

- time zones zi;
- temporal units (milliseconds, hours,...);
- real numbers and integers, where Ia(n) will be its usual string name (like

‘95.743’).
Of the elements of the conceptual inventory, polarities and signatures are not
translated into terms that occur in DRS interpretations, but into different
DRS structures. For instance, an entity structure with negative polarity will
be interpreted as the negation of the representation which represents the
same event structure with positive polarity.



In what follows, we will abbreviate “anchor(e) = m” as m′(e), and if τ is
an n-tuple then we will use τ1 to indicate the first element of that tuple.
(In particular, if τ =<m, a>, i.e. τ is an entity structure, then τ1 = m, so
this is a way to grab the markable. This is used in the interpretation of link
structures.)

2. Entity structures
2.1 Event structures:

Ia(<m,<e, t, a,individual, pos>>) = <{e}, {m′(e), e′(e), t′(e), a′(e))}>>,
or in box notation:

e

m’(e)
e’(e)
t’(e)
a’(e)

Ia(<m,<e, t, a, individual, neg>>) = ¬<{e}, {m′(e), e′(e), t′(e), a′(e))}>

Ia(<m,<e, t, a, set, pos>>) = < {E}, {m′(E),<{e1}, {e1 ∈ E}> →
< {}, {e′(e1), t′(e1), a′(e1)}>}>,
or in box notation:

E

m’(E)

e1

e1 ∈ E
⇒ e’(e1)

t’(e)
a’(e)

Ia(< m, <e, t, a, set, neg>>) = ¬ <{E>, {m′(E),<{e1},{e1 ∈ E}>→
< {}, {e′(e1), t′(e1), a′(e1)} >} >

Ia(<m,<e, t, a, set, k, pos>>) = <{E}>, {m′(E), card(E) = k′,
<{e1}>,{e1 ∈ E}> →
<{},{<e′(e1), t′(e1), a′(e1)}>}>

Ia(<m,<e, t, a, set, k, neg >) = ¬<{E}>, {m′(E), card(E) = k′,
<{e1},{e1 ∈ E}> →
<{}, {e′(e1), t′(e1), a′(e1)}>}>

2.2 Date structures:



Ia(<s,<y,m, n>>) = < {t, z},{s(t), calyear(t, z) = y′,
calmonth(t, z) = m′, caldaynum(t, z) = n′}>

Ia(<s,<y,m>>) = < {t, z},{s′(t), calyear(t, z) = y′,
calmonth(t, z) = m′}>

Ia(<s,<m, n>>) = < {t, z},{s′(t), calmonth(t, z) = m′,
caldaynum(t, z) = n′}>

Ia(<s,<w, n>>) = < {t, z},{s′(t), calweek(t, z) = w′,
caldaynum(t, z) = n′}>

Ia(<s,<w, d>>) = < {t, z},{s′(t), calweek(t, z) = w′,
dayname(t, z) = d′}>

Ia(<s,<y>>) = < {t, z}, {s′(t), calyear(t, z) = y′} >
Ia(<s,<m>>) = < {t, z}, {s′(t), calmonth(t, z) = m′} >
Ia(<s,<w>>) = < {t, z}, {s′(t), calweek(t, z) = w′} >
Ia(<s,<n>>) = < {t, z}, {s′(t), caldaynum(t, z) = n′} >
Ia(<s,<d>>) = < {t, z}, {s′(t), dayname(t, z) = d′} >

2.3 Instant structures:

Ia(<m, <z, d, h>>) = <{t, z1}, {m′(t), z1 = z′, clocktime(t, z′) = h′}>
⊕ Ia(m, d)

Ia(<<m, a, t, R>> = <{t1, t2}, {m′(t1), anchor(t2) = t1, R′(t1, t2)}>
⊕ Ia(m, a)

2.4 Interval structures:

Ia(<m,P>) = < {t}, {m′(t), P (t)} >
Ia(<P, y, z>) = < {t1, z1}, {m′(t1), z1 = z′, calyear(t1, z) = y′}>
Ia(<m,<t1, t2>>) = <{t, t1, t2}, {m′(t), anchor(t1) = t11,

anchor(t2) = t21, begin(t) = t1, end(t) = t2}>
⊕ Ia(<t11, t1)> ⊕ Ia(<t12, t2)>

Ia(<<m, a, T ,R>> = < {t1, t2, a}, {m′(t1), anchor(t2) = T 1, R′(t1, t2)}>
⊕ Ia(<T 1, T )> ⊕ Ia(m, a)

2.4 Time-amount structures:

Ia(<m, <n, u>>) = <{x}, {m′(x), length(x, u′) = n′}>
Ia(< m, <R,n, u>>) = <{x}, {m′(x), R′(length(x, u′), n′)}>

3. Link structures
3.1 Temporal anchoring structures:

Ia(<ε, τ,R >) = Ia(ε) ⊕ Ia(τ) ⊕ <{x, y}, {anchor(x) = ε1,
anchor(y) = τ1, R′(event-time(x), y)}>



3.2 Temporal relation structures:

Ia(<ε1, ε2, R>) = Ia(ε1) ⊕ Ia(ε2) ⊕ <{x1, x2}, {anchor(x) = ε11,
anchor(y) = ε21, R′(event-time(x), y)}>

3.3 Relations between intervals and instants:

Ia(<τ1, τ2, R>) = Ia(τ1) ⊕ (Ia(τ2) ⊕ <{x, y}, {anchor(x) = τ11,
anchor(y) = τ21, R′(x, y)}>

3.4. Event duration relations

Ia(<ε,<n, u>>) = Ia(e) ⊕ <{e}, {anchor(e) = ε1,
length(event-time(e), u′) = n′}>

3.5 Interval length measurement structures:

Ia(< τ,< n, u >>) = <{t}, {length(t, u′) = n′}> ⊕ Ia(τ)

3.6 Subordination structures:

Ia(< ε1, ε2, R >) = <{e1, e2}, {anchor(x) = ε1, anchor(y) = τ1,
R′(e1, e2)}>

3.7 Aspectual structures:

Ia(< ε1, ε2, A >) = Ia(ε1) ⊕ Ia(ε2) ⊕ <{x, y, z, t}, {anchor(x) = ε11,
anchor(y) = ε21, theme(x, z), theme(y, z),
A′(event-time(x), event-time(y))}>

The above clauses define the interpretation of the building blocks of annotation
structures. As an example of the use of clause 3.7, consider the interpretation of
the link structure L1 in (6), for “John started to read”.

(17)

Ia(<ε1, ε2,initiates>) =
= Ia(ε1) ⊕ Ia(ε2) ⊕
<{x, y, z, t}, {anchor(x) = ε11, anchor(y) = ε21, theme(x, z),
theme(y, z), Ia(initiates)(event-time(x),event-time(y))}>

= Ia(ε1) ⊕ Ia(ε2) ⊕
<{x, y, z, t}, {anchor(x) = ε11, anchor(y) = ε21, theme(x, z),
theme(y, z), event-time(x) = t, begin(event-time(y)) = t} >

= < {e1}, {anchor(e1) = ε1, start(e1), past(e1) }> ⊕
< {e2}, {anchor(e2) = ε12, read(e2)}> ⊕
<{x, y, z, t}, {anchor(x) = ε11, anchor(y) = ε21, theme(x, z),
theme(y, z), event-time(x) = t, begin(event-time(y)) = t} >

= < {e1, e2, z, t}, {anchor(e1) = m1, start(e1), past(e1),
anchor(e2) = m2, read(e2), theme(e1, e2), agent(e1, z), agent(e2, z),
event-time(e1) = t, begin(event-time(e2)) = t}>

This DRS is logically equivalent to the first-order logic formula in (18):



(18) ∃e1.start(e1) ∧ anchor(e1) = m1 ∧ past(e1) ∧ ∃e2. read(e2) ∧ anchor(e2) =
m2 ∧ theme(e1, e2) ∧ ∃x. agent(e1, x) ∧ agent(e2, x) ∧ event-time(e1) =
begin(event-time(e2)

It would be possible to construct representations in first-order logic directly
from annotations, rather than via DRSs, but this requires the use of rather com-
plicated formula-manipulation operations.3 We have seen that DRSs, by con-
trast, can be constructed in a simple fashion by exploiting the use of unification
for merging the DRSs for the components of annotation structures, provided
that we keep track of the anchoring of these components in the source text.

Where (16) defines the interpretation of individual entity structures and link
structures, (19) defines the interpretation of an annotation structure as a whole
as the merge of the interpretations of its components:

(19) Ia({e1, .., en, L1, .., Lk}) = Ia(e1)⊕ ..⊕ Ia(en)⊕ Ia(L1)⊕ ..⊕ Ia(Lk)

Applied to the annotation structure (7) for the sentence “John started to read
at midnight”, this gives the following result, which comes down to the merge of
the interpretations of the two link structures, since all the entity structures are
linked together by these link structures:

(20) < Ia{e1, e2, e3}, {L1, L2} > =
= Ia(e1)⊕ Ia(e2)⊕ Ia(e3)⊕ Ia(L1)⊕ Ia(L2)
= Ia(L1)⊕ Ia(L2)
= <{e1, e2, z, t}, {anchor(e1) = m1, start(e1), past(e1), anchor(e2) = m2,

read(e2), theme(e1, e2), agent(e1, z), agent(e2, z), event-time(e1) = t,
begin(event-time(e2) = t}> ⊕
<{e3, t2}, {anchor(e3) = m3, start(e3), past(e3), midnight(t2),
event-time(e3) = t} >

= <{e1, e2, z, t}, {anchor(e1) = m1, start(e1), past(e1), anchor(e2) = m2,
read(e2), theme(e1, e2), agent(e1, z), agent(e2, z), event-time(e1) = t,
midnight(t), begin(event-time(e2)) = t}>

or, in box notation:

3 See Bunt (2007), where these operations are introduced in the context of combining
translations into first-order logic of ISO-TimeML-representations in XML (rather
than annotation structures generated by the abstract syntax).



(21)

e1, e2, z, t

anchor(e1)=m1
past(e1)
start(e1)
anchor(e2)=m2
read(e2)
agent(e1, z)
agent(e2, z)
begin(event-time(e2))=t
midnight(t)
event-time(e1))=t

4 An Ideal Concrete Syntax

A representation of annotation structures can be said to be ideal if it expresses
exactly the information in annotation structures. More precisely, we define a
concrete syntax to be ideal for a given abstract syntax if the following conditions
are satisfied:

– every annotation structure defined by the abstract syntax has a representa-
tion defined by the concrete syntax;

– every representation defined by the concrete syntax unambiguously repre-
sents an annotation structure defined by the abstract syntax.

In this section we define a concrete XML-based syntax that achieves this for
the annotation structures defined by the ISO-TimeML abstract syntax; we call
this syntax the ISO-TimeML Ideal Concrete Syntax (ICS).4

4.1 Representation of conceptual inventory items

Event types:
– attribute pred; values: READ, TEACH, CALL, SLEEP, ENJOY,...;
– tenses: attribute tense; values: PRESENT, PAST, FUTURE;
– aspects: attribute aspect; values: PROGRESSIVE, PERFECT, IMPERFECT;

temporal entities:
– time zones: attribute timeZone; values: CET, GMT, EST,...;
– calendar years: attribute calYear; values: 2010 2009...;
– calendar months: attribute calMonth; values: JANUARY, FEBRUARY,

MARCH, APRIL,,..., DECEMBER;
– calendar day numbers: attribute dayNumber; values: 1, 2, 3,..., 31;
– calendar day names: attribute dayName; values: MONDAY, TUESDAY,...;

4 It is not the case that there exists just one ideal concrete syntax for the ISO-TimeML
abstract syntax; for example, using typed feature structures another ideal represen-
tation format can be defined.



– clock times: attribute clockTime; values: 00:00, 00:01, 00:02,.., 00:59,
01:00, 01:0,.., 23:59;

– unary temporal predicates: attribute pred; values CHRISTMAS, EASTER,

GOLDEN AGE, THANKSGIVING, INDEPENDENCE DAY,...;
– time measurement functions: attribute tLength; values: amounts of time;
– units of time: attribute unit; values: SECOND, MILLISECOND, MINUTE,

DAY, WEEK, MONTH, YEAR, DECADE, CENTURY;
– aspectual relations: attribute aspectRel in aspectual links; values: INITIATE,

TERMINATE, CONTINUE;
– duration relations: attribute: durationRel in duration likns; values: THROUGH,

WHILE...;
– event subordination relations: attribute eventSubordRel in event sub-

ordination links; values: THEME;
– temporal relations: attribute tempRel; values: AFTER, IMMED AFTER,

BEFORE, IMMED BEFORE, DURING,5...;
numerical relations:

– attribute numRel; values: LESS THAN, LESS OR EQUAL THAN;
real numbers:

– attribute numeral; values: all real numbers, as represented by their usual
string name (like 5.107).

4.2 Representation of annotation structures

The collection of entity structures and link structures which together form an
annotation structure is represented in ICS format as a list (in arbitrary order)
of the representations of the entity structures and link structures.

a. Entity structures
Recall that an entity structure is a pair <m, a> where m is a markable and a
is an annotation which is either an event structure, a date structure, an instant
structure, an interval structure, or a time amount structure. These annotations
are all n-tuples of elements from the classes of the conceptual inventory. For
each type of entity structure we introduce an XML element, so this gives the
element types EVENT, INSTANT, PERIOD, DATE and TIME AMOUNT. For exam-
ple, an event structure is an n-tuple with 1 ≤ n ≤ 6, consisting of (maximally)
an event predicate, a tense, an aspect, a set-theoretical type, a cardinality, and
a polarity. The Ideal Concrete Syntax reflects this by defining 6 attributes for
EVENT elements, whose values represent the content of event structures.

More generally, for each type of entity structure we define a set of attributes
for the corresponding XML element, such that its components have a one-to-
one correspondence with attribute values in the ICS-representation. Moreover,
for each of the XML elements corresponding to an entity structure we add (1)
a unique identifier, as the value of the special attribute xml:id, and (2) an

5 For the convenience of annotation, temporal relations are assumed to be polymorphic
in the sense of being applicable to instants, time intervals, dates, and events.



attribute target whose value indicates how the representation is anchored in the
source text. For example, the event structure in the sentence (22a), tokenized as
in (22b), is represented as in (22c):

(22) a. Mary laughed.
b. token1=’Mary’, token2=’laughed’
c. <isoTimeML ICSrep xml:id="a1">

<EVENT xml:id="e1" target="#token2" pred="LAUGH"

tense="PAST" aspect="NONE" polarity="POSITIVE"

signature="INDIVIDUAL" cardinality="NONE"/>

</isoTimeML ICSrep>

Compared to the ISO-TimeML representation, defined in (ISO, 2009), the
ICS representations differ in some respects, of which the following are the most
important:

– ISO-TimeML uses a double classification of events; on the one hand a 7-
way classification inherited from TimeML, expressed by the values of the
attribute class, and on the other hand a 3-way classification into processes,
transitions, and states expressed by the three possible values of the attribute
type. Moreover, the value of the attribute pred is used to indicate the event
type of which a token is considered in the annotation of a certain event. The
use of an attribute with such values only makes sense if there is information
available about the entities denoted by these values. For instance, using a
LAUGH event-type presupposes the availability in an ontology or other knowl-
edge source of information such as laughing being an event of type PROCESS

(rather than STATE, for instance) and in the TimeML classification being
an OCCURRENCE. It therefore seems redundant to specify in annotations not
only that an event is a LAUGH event (value of the pred attribute), but also
that it is a PROCESS (value of the type attribute) and an OCCURRENCE (value
of the class attribute). We therefore leave out both the type and class

attributes and their values (as well as the corresponding elements in the
structures defined by the abstract syntax).

– Following TimeML, ISO-TimeML uses an attribute pos to annotate the part
of speech of the expression at which the annotation is anchored; an attribute
vform to indicate in the case of a verbal expression whether it has infinitive,
gerundive, or participle form; and an attribute mood to indicate whether a
verbal expression has subjunctive mood. Since this is syntactic rather than
semantic information, it is left out here (and from the abstract syntax as
well).

– The attributes signature and cardinality in ICS-representations do not
correspond to attributes in ISO-TimeML. We have introduced them for
the representation of repetitions of events and quantified relations involv-
ing events and time; see below, Section 5.4.

– Following the original TimeML representation, ISO-TimeML uses the TIMEX3
tag for all temporal entities, and distinguishes among them by means of the



type attribute into dates, times, periods, durations, and sets of these. In ICS
representations, by contrast, we have the tags INSTANT, PERIOD, DATE, and
TIME AMOUNT for each of the different kinds of time-related concepts, and val-
ues of the signature attribute for differentiating between individual entities
and sets of entities.

b. Link structures
Analogous to the way entity structures are represented, we introduce for each of
the seven types of link structure defined by the abstract syntax an XML element
type. Link structures consist of two entity structures and a relation, so for each
type of link structure we introduce three attributes, two having pointer values
for referring to the component entity structure representations, and one whose
value is the corresponding relation. For link structures which anchor events in
time this is the TIME ANCHORING tag, with the attributes anchoredEvent and
anchorTime, plus the attribute tempRel specifying in more detail in what way
the event is anchored (e.g. by the relation AT or by the relation INCLUDED IN).
Link structures are usually not ‘consumptive’, i.e. the information which they
contain is not expressed by a stretch of source text.

In the abstract syntax there are no link structures for relations between link
structures, but only between entity structures, therefore link structure repre-
sentations do not need an identifier, unlike entity structure representations. The
ICS expression (23c) represents the annotation of example sentence (3), repeated
here as (23a), tokenized as in (23b). Attributes which have the value NONE or
another default value are not shown here for the sake of readability.

(23) a. John started to read at midnight.
b. <token1=’John’, token2=’started’, token3=’to’, token4=’read’,

token5=’at’, token6=’midnight’>
c. <isoTimeML ICSrep xml:id="a1">

<EVENT xml:id="e1" target="#token2" pred="START"

tense="PAST"/>

<EVENT xml:id="e2" target="#token4" pred="READ"/>

<ASPECTUAL LINK event="#e1" relatedToEvent="#e2"

aspectRel="INITIATE""/>

<INSTANT xml:id="t1" target="#token6" clockTime="24:00"/>

<TIME ANCHORING anchoredEvent="#e1" anchorTime="#t1"

tempRel="AT"/>

</isoTimeML ICSrep>

5 The representation of annotations in ideal format

In this section we consider the use of the ICS representation format and show
its advantages over the use of formats which are not ideal. We will often sim-
plify the representations by suppressing the anchoring to primary text in DRS
interpretations.



We will first discuss the ICS-representation of annotations encoding dates and
times, and subsequently consider the representation of annotations of periods
and of amounts of time. We then turn to the representation of linking structures
connecting annotations of events with those of time-related entities. Finally, we
will discuss the annotation of phenomena relating to recurring events and to
quantification in natural language involving time and events.

5.1 Representation of dates and times

ISO-TimeML follows ISO standard 8601 in using the format yyyy-mm-dd to en-
code a date, consisting of a year, a month and a day. This leads to representations
like (24) for “June 7, 2012”:

(24) a. June 7, 2012
b. token1=’June’ token2=’7’ token3=‘2012’
c. <isoTimeML xml:id="a1"/>

<TIMEX3 xml:id="t1" target="#range(token1,token3)"

type="DATE" value="2012-06-07/">

</isoTimeML>

The annotation of an incompletely specified date, like “August” in the sentence
“I will take some days off in August”, is represented using variables in those
positions where no information is available:

(25) a. August
b. token1=’August’
c. <isoTimeML xml:id="a1"/>

<TIMEX3 xml:id="t1" target="#token1" type="DATE"

value="xxxx-08-dd/">

</isoTimeML>

While we obviously encourage in general to follow existing ISO standards, in this
case that does not seem to be a good idea. The ISO 8601 representation of dates
in the form "yyyy-xx-zz" is meant to put an end to such confusions as whether
“09-05-2010” refers to the 9th of May 2010 or to the 5th of September 2010.
This makes sense for standardizing the specification of dates in a text (and in
the metadata of a document), but this has little to do with the question of how
to annotate natural language expressions referring to dates. Representations like
(24) and (25) are unsatisfactory from a semantic point of view. Conceptually,
the specification of a date has three parts: a calendar year, a calendar month,
and a day within the month (and each of these should be considered for a given
time zone), and each of these parts should be treated as semantic concepts rather
than as substrings in a alphanumerical code. The representations (24) and (25)
are not only conceptually but also technically unsatisfactory, as they do not
make the components of the temporal information available for compositional
interpretation and reasoning.



The ideal concrete syntax defined above, by contrast, follows the view in-
corporated in the abstract syntax that a date is a complex concept, and thus
represents the examples (24) and (25) as follows.

(26) a. June 7, 2012
b. <isoTimeML ICSrep xml:id="a1">

<DATE xml:id="t1" target="#range(token1,token3)"

calYear="2012" calMonth="JUNE" dayNumber="7"/>

</isoTimeML ICSrep>

(27) a. August
b. <isoTimeML ICSrep xml:id="a1">

<DATE xml:id="t1" target="#token1" calMonth="AUGUST"/>

</isoTimeML ICSrep>

These representations are evidently more transparent as well as better suitable
for semantic processing. They are straightforward renderings of the correspond-
ing abstract annotation structures, from which they inherit their semantics. For
example, the semantics of (26) is expressed by the following DRS, where here as
in most examples in the rest of this paper we omit for brevity the anchoring to
source text tokens, and where the variable z ranges over time zones (which are
implicit in the examples here, but see example (29)):

(28)

t1 z

date(t1)
calyear(t1,z) = 2012
calmonth(t1,z) = June
caldaynum(t1,z) = 7

Times, as shown on a clock, are represented in ISO-TimeML in the same way
as dates, using an alphanumerical code, for example:

(29) a. 4 p.m.
b. <isoTimeML xml:id="a1"/>

<TIMEX3 xml:id="t1" target="#token1 #token2"

type="TIME" value="T16:00/">

</isoTimeML>

Again, we find the use of a string encoding, including the character ‘T’ to distin-
guish time values from period lenghts and other temporal values, unsatisfactory
from a semantic point of view. A clock time is conceptually similar to a date,
in that it is a way of identifying a point in time. A clock time specification
also has some internal structure, like a date, but the conceptual status of these
components is different, since one can ask in what year, in what month, or on
what day something occurs, but for an event occurring at 10:15 one cannot in a
similar way ask in what hour or what minute the event occurs. We therefore do



not introduce separate attributes for the hour and minute parts of a clock time,
but rather treat clock times as numerical values of an attribute clockTime that
applies to instants. The attributes begin and end, which apply to intervals, also
have these values. So the ICS-representation of (29) is:

(30) a. 4 p.m.
b. <isoTimeML ICSrep xml:id="a1"/>

<INSTANT xml:id="t1" target="#token1 #token2"

clockTime="16:00"/>

</isoTimeML ICSrep>

In practical situations, the temporal intervals and instants that may be re-
ferred to by specifying a date plus a clock time, are hardly ever fully specified.
An example where they are is (32a), which would be annotated in ICS format
as in (32c).

(31) a. Monday March 16th 2007 at 10:15 a.m. CET
b. token1 = ’Monday’ token1=’March’ token3=’16th’ token4=’2007’

token5=’at’ token6=’10:15’ token7=’a.m.’ token8=’CET’
c. <isoTimeML ICSrep xml:id="a1"/>

<INSTANT xml:id="t1" target="#range(token1,token8)"

timeZone="CET" calYear="2007" calMonth="MARCH"

dayName="MONDAY" dayNumber="16" clockTime="10:15"/>

</isoTimeML ICSrep>

When describing a clock time, it is unusual to be explicit about a time zone,
which is usually assumed to be clear from the context. This makes it attractive
to have a separate attribute timeZone which can be left unspecified, rather then
using an attribute which would have complex values consisting of a time on the
clock and a time zone. Further support for factoring out time zones in a separate
attribute comes from the consideration that dates are in fact also time zone-
dependent, as we were reminded of when we watched the year 2000 millennium
change on television occurring at different times in Hong Kong, Dubai, Paris,
Rio de Janeiro, and Hawaii. Not only do both clock times and dates depend on
the choice of a time zone, but in the precise specification of an ‘instant’, the date
and the clock time should be taken according to the same time zone, hence it is
best to consider an instant as defined by a triple <time zone, date, clock time>,
as in the abstract syntax defined above.

Using this approach to the representation of the annotation of dates and
times, the following example illustrates their use for an everyday example.

(32) a. I will call you at two-thirty.
b. token1=’I’ token2=’will’ token3=’call’ token4=’you’ token5=’at’

token6=’two-thirty’
c. <isoTimeML ICSrep xml:id="a1">

<EVENT xml:id="e1" target="#token2 #token3" pred="CALL"

tense="FUTURE"/>



<INSTANT xml:id="t1" target="#token6" clockTime="14:30"/>

<TIME ANCHORING anchoredEvent="#e1"

anchorTime="#t1" tempRel="AT"/>

</isoTimeML ICSrep>

Besides the indication of a point in time by means of a date, a clock time, and
a time zone, the abstract syntax also covers the annotation of cases like “half an
hour after midnight”, where an instant is defined by its temporal distance and
position relative to another instant or period. We will consider this case below,
after we have considered the representation of temporal distances.

5.2 Representation of amounts of time

An amount of time measures the length of a time interval, or the accumulated
length of a series of intervals (or, in other words, of an interval with holes). Like
any measurement of length or size, temporal length measurement requires the
choice of a unit and a numerical specification. Such units are for instance minute,
second, and millisecond. Other units such as hour, day and year have a double life
in natural language, in the sense that these words can be used to refer to certain
intervals as well as to a unit of measurement (similar to “cup” and “teaspoon”,
often used in cooking recipes for measuring volumes). This ambiguity, which is
displayed by most of the words that are commonly used for measuring temporal
length, often leads to confusion in annotation schemes, as we will see below.

A characteristic property of units of measurement is that the units that can
be used in a given dimension are numerically interrelated. This can be expressed
by means of a conversion function which specifies a numerical relation between
the units, such as Conversion(hour, minute) = 60, thus explaining equivalences
like 1.5 hour = 90 minutes and comparisons like 100 minutes is more than an
hour. (See further Bunt, 1985 for a calculus of amounts.)

An example of the representation of amounts of time in ICS format is that
of the expression “eleven and a half hours” in sentence (33a):

(33) a. The flight to Hong Kong takes eleven and a half hours.
c. <ISOTimeML ICSrep xml:id="s1">

<TIME-AMOUNT xml:id="a1" target="#token7 #token8 #token9

#token10 #token11" numeral="11.5" unit="HOUR"/>

</ISOTimeML ICSrep>

We mentioned above that intervals and temporal distances are often confused;
this is illustrated by the representation in ISO-TimeML of amounts of time, as
in the following example:

(34) a. no more than 60 days
b. <isoTimeML xml:id="a1">

<TIMEX3 xml:id="t1" target="#range(token1,token4)"

#token5" type="DURATION" value="P60D" mod="EQUAL OR LESS"/>

</isoTimeML>



This representation expresses that a temporal entity of type ‘duration’ is being
annotated, which is correct, but then it says the ‘value’ of the duration is less
than or equal to "P60D" which stands for ‘period of 60 days’. But an amount of
time is not a period; it is the length of a period.

In ICS format, by contrast, the annotation of this example is represented
as shown in (35). This representation makes no reference to periods, and has
its conceptual components marked as separate enitities – readily available for
semantic processing.

(35) a. no more than 60 days
b. <ISOTimeML ICSrep xml:id="s1">

<TIME-AMOUNT xml:id="a1" target="#range(token1,token5)"

numRel="EQUAL OR LESS" numeral="60" unit="DAY"/>

</ISOTimeML ICSrep>

The following example, from ISO 24617-1:2011, shows that the confusion between
periods and their lengths is in fact more profound than in the value of the value

attribute.

(36) a. John taught for 20 minutes on Monday.
b. token1=’John’ token2=’taught’ token3=’for’ token4=’20’ token5=’minutes’

token6=’on’ token7=’Monday’
c. <isoTimeML xml:id="a1">

<EVENT xml:id="e1" target="#token2" pred="TEACH"

type="PROCESS" class="OCCURRENCE" tense="PAST"/>

<SIGNAL xml:id="s1" target="#token3" pred="FOR"/>

<TIMEX3 xml:id="t1" target="#token4 #token5"

pred="20 MINUTES" type="DURATION" value="P20TM"/>

<SIGNAL xml:id="s2" target="#token6" pred="ON"/>

<TIMEX3 xml:id="t2" target="#token7" type="DATE"

value="xxxx-wxx-1"/>

<TLINK timeID="#t1" relatedToTime="#t1"

tempRel="IS INCLUDED"/>

<TLINK eventID="#e1" relatedToTime="#t2"

tempRel="SIMULTANEOUS"/>

</isoTimeML>

This representation refers to a teaching event which is related to a duration
of 20 minutes through a TLINK using the relation SIMULTANEOUS. Simultaneity,
however, is a relation that may obtain between events, but not between an event
and its duration. This problem is partly caused by the fact that ISO-TimeML,
following TimeML, uses TLINK for several conceptually different relations: (1)
for anchoring an event in time; (2) for expressing temporal relations between
events; (3) for temporal relations between intervals and instants; (4) for relating
an event to its duration; and (5) for relating a temporal interval to its length.
By contrast, in the abstract syntax defined above and correspondingly also in
the ideal concrete syntax we distinguish each of these types of relation, so that
no such confusion can arise, as (37) illustrates.



(37) <isoTimeML ICSrep xml:id="a1">

<EVENT xml:id="e1" target="#token2" pred="TEACH" tense="PAST"/>

<TIME AMOUNT xml:id="t1" target="#token4 #token5"

numeral="20" unit="MINUTES"/>

<DATE xml:id="d1" target="#token7" dayName="MONDAY"/>

<DURATION measuredEvent="#e1" tLength="#t1"/>

<TIME ANCHORING anchoredEvent="#e1" anchorTime="#d1"

tempRel="INCLUDED IN"/>

</isoTimeML ICSrep>

5.3 Representation of time intervals

Time intervals can be described in natural language in a multitude of ways. The
abstract syntax specified in Section 3.2 distinguishes four conceptually different
types of interval identification: (1) by means of a predicate that names a partic-
ular period in history or that characterizes a certain type of period (and thus
identifies a class of intervals rather than a single one); (2) by the name of an
annually recurring event plus a calendar year and time zone; (3) by a begin- and
end point; and (4) by means of a distance to a given instant or interval (like “the
two weeks up to Christmas”. We consider each of these types in turn.

The identification of a unique temporal interval by means of a proper name
is very simple, as illustrated by (38):

(38) a. the Renaissance
b. <ISOTimeML ICSrep xml:id="a1">

<PERIOD xml:id="t1" target="#token2" pred="RENAISSANCE"/>

</ISOTimeML ICSrep>

The identification of a temporal interval by the name of an annually recur-
ring event plus a year and a time zone is illustrated by (39), where the time zone
is left implicit, as is commonly done in natural language, and with its interpre-
tation in the form of DRS in (39c). Since the precise begin and end points of a
year are different in different time zones, a time zone is required for the precise
identification of an interval. While the specification of a time zone may be left
out in natural language and hence also in the annotation, it must be assumed in
the semantics; a time zone variable is therefore introduced in the DRS in (39c).

(39) a. Easter 2011
b. <ISOTimeML ICSrep xml:id="a1">

<PERIOD xml:id="t1" target="#token1 #token2"

pred="EASTER" year="2011"/>

</ISOTimeML ICSrep>

c.

t1 z

xmas(t1)
calyear(t1,z)=2011



The identification of a period by its begin-and end points is illustrated by
(40). The ICS-representation of “from nine to five” in (40b) says in a very
straightforward way that a period is considered which begins at nine o’clock
a.m. and ends at five o’clock p.m.. The corresponding annotation structure has,
according to the semantic rules laid out in Section 3.3, the DRS interpretation
(40c), in which again a time zone variable is introduced for the precise interpre-
tation of clock times.

(40) a. from nine to five
b. <ISOTimeML ICSrep xml:id="a1">

<PERIOD xml:id="t1" target="#range(token1,token4)"

begin="#t2" end="#t3"/>

<INSTANT xml:id="t2"target="#token2" clockTime="09:00"/>

<INSTANT xml:id="t3" target="#token4" clockTime="17:00"/>

</ISOTimeML ICSrep>

c.

t1 t2 t3 z

clocktime(t2,z) = 09:00
begin(t1) = t2
clocktime(t3,z) = 17:00
end(t1) = t3

As mentioned above, an amount of time can be used to identify a time point
relative to a given time point, or an time interval relative to a given date or
time interval. Example (41) illustrates the ICS-treatment of such cases for the
expression “The three weeks before Christmas”.

(41) a. The three weeks before Christmas were very busy.
b. <ISOTimeML ICSrep xml:id="a1">

<TIME AMOUNT xml:id="a1" numeral="3" unit="WEEK"/>

<PERIOD xml:id="t1" target="#range(token1,token3)"

tLength="#a1" refTime="#t2" tempRel="IMMED BEFORE"/>

<PERIOD xml:id="t2" pred="CHRISTMAS"/>

</ISOTimeML ICSrep>

c.

t1 t2 z y

length(t1,week) = 3
immed-before(t1,t2)
xmas(t2)
calyear(t1,z) = y

A temporal distance can also be used in combination with a temporal relation
in order to identify a time point; the ICS treatment of such cases is illustrated in
(42). Note that an instant t1 is introduced which is located at a distance of 0.5
hours before midnight; the CLOSE event is temporally anchored at this instant.



(42) a. They close half an hour after midnight
b. <isoTimeML ICSrep xml:id="a1">

<EVENT xml:id="e1" target="#token2" pred="CLOSE"/>

<INSTANT xml:id="t1" target="#range(token3,token7)" distance="#a1"

anchorTime="24:00" tempRel="AFTER"/>

<TIME AMOUNT xml:id="a1" target="#range(token3,token5)"

numeral="0.5" unit="HOUR"/>

<TIME ANCHORING anchoredEvent="#e1" anchorTime="#t1"/>

</isoTimeML ICSrep>

5.4 Representation of linking structures

The abstract syntax specified in Section 3.2 distinguishes seven kinds of links:

1. for anchoring events in time, as in “John came home at midnight” or in “I
have been teaching from nine to five today”;

2. for temporally relating one event to another, as in “He finalized the slides
before going to bed”;

3. for relating intervals and instants to each other, as in “Chinese New Year is
about four weeks after Christmas”;

4. for measuring the duration of an event, as in “I’ve been teaching eight hours”;
5. for measuring the length of a temporal interval (not necessarily related to

an event), as in “Their summer vacation is six weeks long”;
6. for subordination relations between events, as in “You won’t believe whom I

ran into today”;
7. for aspectual relations between events, as in “starting to read”.

For each of these seven types an XML-element has been introduced in the
ideal concrete syntax. We have already seen examples of the TIME ANCHORING el-
ement for anchoring an event in time, of the ASPECTUAL LINK for relating events
aspectually (see (23), and of the DURATION link for measuring the duration of
an event (see (37). All the linking structures introduced in the abstract syntax
are binary; therefore all these elements have two attributes which have pointer
values, pointing to the representations of the entity structures which they relate,
plus an attribute whose value specifies the relation that applies. The represen-
tation of the other types of linking structure is similar, all following the simple
pattern:

(43) <ELEMENT-NAME sourceAttribute=[pointer value]

targetAttribute=[pointer value] relationName=[relation]/>

5.5 Repetitions, frequencies, and quantification

All the examples considered so far concern the annotation of information about a
single event. In natural language we also encounter cases of information relating
to multiple events or to repetitions of events, as in “John called twice”. Using
the ISO-TimeML representation format, the annotation of this sentence would
be represented as follows:



(44)<isoTimeML xml:id="a1">

<EVENT xml:id="e1" target="#token2" pred="CALL"

type="PROCESS" class="OCCURRENCE" tense="PAST"/>

<TIMEX3 xml:id="t1" target="#token3" freq="2X"/>

<TLINK eventID="#e1" relatedToTime="#t1" tempRel= "DURING"/>

</isoTimeML>

This representation is problematic in several respects. First, the EVENT part
refers to a single event e1, which is temporally linked to the temporal entity
twice, while it seems evident that two events are considered. Second, what kind
of entity is ‘twice’? As mentioned above, ISO-TimeML uses the TIMEX3 tag for
all temporal entities, and distinguishes among these entities by means of the
type attribute into dates, times, periods, durations, and sets of these. But twice
is neither of these types. In fact, the word “twice” does not denote a temporal
entity at all; it is rather a name of a counter, which expresses how often a certain
type of event occurred; it doesn’t provide any temporal information.

The abstract syntax specifies as one of the components of an entity structure
the set-theoretical type which captures whether the structure describes individ-
ual objects, sets of individual objects, or higher-order entities. In the ideal con-
crete syntax this is represented by the attribute signature, with such values as
INDIVIDUAL and SET for events as well as for temporal objects, thus allowing the
representation of sets of events, sets of temporal intervals, sets of instants, sets
of amounts of time, and so on. Together with the cardinality component which
event structures also have, represented in ICS format by the cardinality at-
tribute and its values for indicating the number of elements in a set, this allows
the temporal and event-related information in the sentence “John called twice”
to be represented in a simple and transparent way as follows:

(45) a. John called twice
b. token1=’John’ token2=‘called’ token3=‘twice’
c. isoTimeML ICSrep xml:id="a1">

<EVENT xml:id="e1" target="#token2" pred="CALL"

tense="PAST" signature="SET" cardinality="2"/>

</isoTimeML ICSrep>

This representation says, simply, that two CALL events occurred. Because the
signature attribute has the value SET, the annotation does not refer to a single
event but to a set of events. This is also reflected in the semantics through the
interpretation of the annotation structure as a DRS which contains a discourse
referent denoting a set of events:

(46)

E

card(E)=2

e1

e1 ∈ E
⇒ call(e1)

past(e1)



This interpretation says that there is a set E of events, containing two members,
and that these are both ‘call’ events that happened in the past.

Expressions such as “Only once”, “twice”, “thrice”, and “four times”, denote
in some contexts the number of times a certain type of event recurred, as in (44),
and denote in other contexts a frequency, i.e. the number of times something oc-
curs within a certain amount of time, like “twice a day”. In (ISO-)TimeML, the
attribute freq is used for both, and this creates conceptual and formal problems
in the interpretation of the annotations, because the number of times an event
type recurs is just a number, while a frequency consists semantically of two com-
ponents: a number and an amount of time. The (ISO-)TimeML representation
in (44) is incorrect in this respect.

Repetitions and frequency of occurrence of events are closely related to event
quantification. Quantification in natural language is the phenomenon that a
predicate is applied to each or some of the members of a set, or collectively to
the set as a whole, or to subsets of it. This predicate may be unary, as in (47a),
in which case it applies to (members or subsets of) a single set, or it may have a
higher arity, as in (47b-d), relating the members of one set to one or more other
sets.

(47) a. These books are heavy.
b. The students have to read five papers.
c. The men moved the pianos.
d. The boys gave the girls some of the sweets.

In (47a), the predicate heavy can be understood as applying to the individual
members of a certain set of books, or collectively to the set of books as a whole.
Similar considerations apply yo the other examples. This is called the distribu-
tivity of the quantification (Bunt, 1985).

When verbs are viewed as referring to events, as in ISO-TimeML, then every
sentence displays the phenomenon of quantification. Consider for instance the
following sentence:

(48) Everybody will die.

This sentence can be read either as expressing that for each person there will be
an event where this person dies, or that there will be an (apocalyptic) event in
which everyone will die. So even an intransitive verb gives rise to quantification,
and thus to issues such as collective versus individual involvement and relative
scoping.6

ISO-TimeML does not consider the relations between events and their par-
ticipants, therefore issues of relative scoping and collectiveness might seem not
to arise. However, in principle any relation between two sets of entities is quan-
tified in a certain way, and so are the relations between events and temporal
entities, for instance by means of natural language temporal quantifiers such
as “always”, “sometimes”, “every Monday”, so we do need some provisions to

6 See also Bunt (2005) for an analysis of quantification in terms of feature structures.



represent time- and event-related quantification. ISO-TimeML has the attribute
quant for this purpose, as one of the attributes of temporal entities, but this is
not satisfactory, for similar reasons as why frequencies should not be attributes
of temporal entities.7

Quantifications, or rather, the properties of a quantification such as the dis-
tributivities of the sets of participants involved, are aspects of relations, such
as the temporal anchoring relation between a set of events and a set of time
intervals. We therefore introduce a number of attributes in the ICS represen-
tation of link structures, allowing us to annotate quantificational properties.
For instance, a TIME ANCHORING element will have attributes eventDistr and
timeDistr, with values like INDIVIDUAL and COLLECTIVE for indicating the dis-
tributivity on either side of the relation.

This is illustrated in the ICS representation (49b) of the quantification in
“John calls every day”, with its representation in ISO-TimeML in (49c) for con-
trast. We invite the reader to inspect the two representations for their differences,
and enjoy the transparency and conceptual clarity of the ICS representation.

(49) a. John calls every day.
b. <isoTimeML ICSrep>

<EVENT xml:id="e1" target="#token2" pred="CALL"

signature="SET"/>

<PERIOD xml:id="t1" target="#token4" pred="DAY"

signature="SET"/>

<TIME ANCHORING anchoredEvent="#e1" anchorTime="#t1"

tempRel="INCLUDED IN" eventDistr="INDIVIDUAL"

timeDistr="INDIVIDUAL" timeQuant=EVERY"/>

</ISOTimeML iCSrep>

c. <isoTimeML xml:id="a1">

<EVENT xml:id="e1" target="#token2" pred="CALL"

type="PROCESS" class="OCCURRENCE"/>

<TIMEX3 xml:id="t1" target="#range(token3,token4)"

type="SET" value="P1D" quant="EVERY"/>

<TLINK eventID="#e1" relatedToTime="#t1"

relType="IS INCLUDED"/>

</ISOTimeML>

It was noted above that a description of recurring events with a certain
frequency, as in “John calls twice every day”, forms in fact a case of event
quantification. The ICS representation of such a sentence, viewed in this way, is
shown in (50).

(50) a. John calls twice every day
b. <isoTimeML ICSrep>

<EVENT xml:id="e1" signature="SET"/>

7 See also Bunt (2010) and Bunt & Pustejovsky (2010) for more discussion about event
quantification and ISO-TimeML.



<PERIOD xml:id="t1" pred="DAY" signature="SET"/>

<TIME ANCHORING anchoredEvent="#e1" anchorTime="#t1"

tempRel="INCLUDED IN" eventDistr="INDIVIDUAL"

timeDistr="INDIVIDUAL" eventQuant="2" timeQuant=EVERY"/>

</isoTimeML ICSrep>

This representation can be read as saying that a set of call events is anchored
timewise in a set of days, such that the individual events are anchored at in-
dividual days, where every day includes a time anchor for two of these events.
This is exactly what we want.

6 Conclusions

This paper brings three innovations to the definition of semantic annotation lan-
guages. First, we have added a third component to the usual two components of
a language definition: besides a syntax, that specifies the set of expressions of the
language, and a semantics that specifies for each expression what it means, we
have introduced an abstract syntax which specifies the categories of information
that the annotations expressed in the language may contain, and the ways in
which elements of these categories may be combined into annotation structures.
This specification is in set-theoretical terms, independent of any representation
format. What is traditionally called a syntax, by contrast, is in terms of a par-
ticular representation format. This distinction is particularly important in the
context of defining annotation standards, since according to the Linguistic An-
notation Framework (Ide & Romary, 2004), standards should be defined at the
level annotations, independent of any representation format.

Second, we have shown the possibility to define the semantics of an anno-
tation language as a specification of the meanings of the annotation structures
defined by the abstract syntax, rather than as a description of the meanings
of representations defined by a concrete syntax. This has the advantage that
any representation format which defines a rendering of the structures defined by
the abstract syntax inherits the semantics of the abstract syntax. The meanings
of these annotation structures were shown to be derivable in a straightforward
manner by keeping track in the DRSs of the information in the annotations
concerning their anchoring (through markable structures) to the source text.

Third, we have introduced the notion of an ideal concrete syntax, being a
specification of a representation format where each annotation structure defined
by the abstract syntax has a unique rendering in that format, and each repre-
sentation is the rendering of uniquely determined annotation structure. If F1 is
a representation format that has the property of being ideal, then the mean-
ing of any representation ε1 is the meaning defined by the semantics for the
uniquely determined annotation structure ε′, which is represented according to
F1 by ε1. Therefore, if F2 is another ideal representation format, then an ex-
pression ε2 of F2 is semantically equivalent to expression ε1 of F1 iff ε′ is also
the uniquely determined annotation structure represented by ε2 in F2. There is



then also provably a systematic procedure for converting F1-representations into
F2-representations and vice versa. (See further Bunt, 2010.)

Is an ideal representation format ideal in the sense of not being realistically
achievable? We have shown that an ideal XML-representation format can be
defined for a given abstract syntax by systematically introducing XML elements
for entity types and relational types. In fact, being ideal should be a requirement
of any satisfactory representation format, since a format which is not ideal is
either unable to represent all the semantic distinctions that are made by the
abstract syntax, or else it introduces irrelevant parts, which have no semantic
basis, or both.

Besides being theoretically important, ideal representation formats have the
advantages of being maximally simple, accurately representing the conceptual
distinctions made in the abstract syntax, and being optimally transparent, al-
lowing a simple semantic interpretation. We have illustrated this for the anno-
tation of documents with information about time and events, as when using the
TimeML annotation language (Pustejovsky et al., 2005; 2007) and as undertaken
in a project carried out by the International Organization for Standardization
ISO. As a side-effect of applying our methodology to the latter, we have noted
a number of points where the ISO-TimeMl proposal may be improved. This
shows that the approach can be of practical value for the design of annotation
languages.

We have also observed that the introduction of an abstract syntax as a
information-theoretic layer in the definition of a semantic annotation language
supports a principled view on the information that annotations are intended to
capture, more than is encouraged by the traditional approach where a repre-
sentation format is defined for which a semantics is defined (if a semantics is
defined at all). Such a principled view gives us a direct handle on general issues
in semantic annotation such as quantification. We have indicated a direction for
how to capture quantificational aspects in the annotation of time and events
by viewing quantification as the description of properties of a relation between
sets of entities, allowing us to also annotate descriptions in natural language
of recurring events and frequencies of events in a more satisfactory way than
has so far been proposed. This is potentially interesting not only for the anno-
tation of timeand event-related information, but more generally for annotating
expressions of quantification in natural language.
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