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Abstract

This paper presents an approach to flexible and adaptive dialogue management driven by cog-
nitive modelling of human dialogue behaviour. Artificial intelligent agents, based on the ACT-R
cognitive architecture, together with human actors are participating in a (meta)cognitive skills train-
ing within a negotiation scenario. The agent employs instance-based learning to decide about its
own actions and to reflect on the behaviour of the opponent. We show that task-related actions
can be handled by a cognitive agent who is a plausible dialogue partner. Separating task-related
and dialogue control actions enables the application of sophisticated models along with a flexible
architecture in which various alternative modelling methods can be combined. We evaluated the
proposed approach with users assessing the relative contribution of various factors to the overall
usability of a dialogue system. Subjective perception of effectiveness, efficiency and satisfaction
were correlated with various objective performance metrics, e.g. number of (in)appropriate sys-
tem responses, recovery strategies, and interaction pace. It was observed that the dialogue system
usability is determined most by the quality of agreements reached in terms of estimated Pareto
optimality, by the user’s negotiation strategies selected, and by the quality of system recognition,
interpretation and responses. We compared human-human and human-agent performance with
respect to the number and quality of agreements reached, estimated cooperativeness level, and fre-
quency of accepted negative outcomes. Evaluation experiments showed promising, consistently
positive results throughout the range of the relevant scales.
Keywords: dialogue management, cognitive agent technology, intelligent tutoring system, spo-
ken/multimodal dialogue system

1. Introduction

The increasing complexity of human-computer systems and interfaces results in an increasing de-
mand for intelligent interaction that is natural to users and that exploits the full potential of spoken
and multimodal communication. Much of the research in human-computer system design has been
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Technique Example task Dialogue phenomena handled
Finite state script Long-distance calling User answers questions
Frame based Getting train arrival and departure information User asks questions, simple clarifications by the system
Information State Update Travel booking agent Flexible shifts between pre-determined topics/tasks

Refined grounding mechanisms
Plan based Kitchen design consultant Dynamically generated topic structures, e.g. negotiation dialogues
Agent based Disaster relief management Different modalities, e.g. planned world and actual world

Collaborative planning and acting
Probabilistic approaches Various information-seeking tasks, Dialogue policies design, i.e. learning

negotiation games combined with the most approaches mentioned above
Chat-oriented; Retail ‘chat commerce’ Question-answering skills
interactive pattern matching Psychotherapies, personal assistant Social interactive aspects
/template-based

Table 1: State-of-the-art techniques for task-oriented dialogue system.

conducted in the area of task-oriented systems, especially for information-seeking dialogues con-
cerning well-defined tasks in restricted domains – see Table 1 for the main paradigms used for
dialogue modelling in domains of varying complexity.

Many existing systems represent a set of possible dialogue state transitions for a given dialogue
task. Dialogue states are typically defined in terms of dialogue actions, e.g. question, reply, inform,
and slot-filling goals. States in a finite state transition network are often used to represent the dia-
logue states (Bilange, 1991; Dahlbäck and Jönsson, 1998). Some flexibility has been achieved when
applying statistical machine learning methods to dialogue state tracking (Williams et al., 2013). Sta-
tistical dialogue managers were initially based on Markov Decision Processes (Young, 2000) where
given a number of observed dialogue events (often dialogue acts), the next event is predicted from
the probability distribution of the events which have followed these observed events in the past.
Partially Observable Markov Decision Processes (Williams and Young, 2007) model unknown user
goals by an unknown probabilistic distribution over the user states. The POMDP approach is con-
sidered as the state-of-the-art in task-oriented spoken dialogue systems, see Young et al. (2013).
However, when dealing with real users, the defined global optimisation function poses important
computational difficulties. Recently, deep neural networks have gained a lot of attention (Hender-
son et al, 2013; 2014). Hierarchical recurrent neural networks have also been proposed to generate
open domain dialogues and build end-to-end dialogue systems trained on large amounts of data
without any detailed specification of information states (Serban et a., 2016). The real challenge for
end-to-end frameworks is however the decision-taking problem related to the dialogue management
for goal-oriented dialogues. Statistical and end-to-end approaches require really large amounts of
data, while offering a rather limited set of dialogue actions (Kim et al., 2015). While such dialogue
systems may perform well on simple information-transfer tasks, they are mostly unable to handle
real-life communication in complex settings like, for example, multi-party conversations, tutoring
sessions and debates. More conversationally plausible dialogue models are based on rich represen-
tations of dialogue context for flexible dialogue management, e.g. information-state updates (ISU,
Traum et al., 1999; Bunt, 1999; Bos et al., 2003; Keizer et al., 2011). Other approaches to dialogue
processing and management are built as full models of rational agency accounting for planning
and plan recognition (Cohen and Perrault, 1979; Carberry, 1990; Sadek, 1991). Plan construction
and inference are activities that can however easily get very complex and become computationally
intractable. Alternatively, dialogue plans and strategies can be learned and adapted through rein-
forcement learning (Sutton and Barto, 1998). However, this seems to require even greater amounts
of data, Henderson et al. (2008).
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The research community is currently targeting more flexible, adaptable, open-domain multi-
modal dialogue systems. Advances are made in modelling and managing multi-party interactions,
e.g. for meetings or multi-player games, where approaches developed for two-party dialogue have
to be extended in order to model phenomena specific to multi-party interactions. Nevertheless,
simple command/control and query/reply systems prevail. Some dialogue systems developed for
research purposes allow for more natural conversations, but they are often limited to a narrow man-
ually crafted domain and to rather restricted communication behaviour models, e.g. often modelled
on information retrieval tasks. In some cases, these restrictions are imposed deliberately by the re-
searchers to be able to investigate a limited set of dialogue phenomena without having to deal with
unrelated details. However, this reduces the practical realism of the dialogue system.

Expectations of the users of today are rather high, requiring a real-time engagement with highly
relevant personalized content that mimics human natural behaviour and is able to adapt to changing
user needs and goals. Nowadays, there is a growing interest in Artificial Intelligence (AI)-powered
conversational systems that are able to learn and reason, to facilitate realistic interactive scenarios
with realistic assets and lifelike, believable characters and interactions. AI models may represent
rather complex research objects. Despite their acknowledged potential, generating plausible AI
models from scratch is challenging. For instance, cognitive models were successfully integrated
into intelligent tutoring and intelligent narrative systems, see Paiva et al. (2004); Riedl and Stern
(2006); Vanlehn (2006); Ritter et al. (2007); Lim et al. (2012). Since such models produce detailed
simulations of human performance encompassing many domains such as learning, multitasking,
decision making, and problem solving, they are also perfectly capable to play the role of a believ-
able human-like agent in various human-agent settings. Although the abilities of cognitive agents
continue to improve, human-agent interaction is often awkward and unnatural. The agents most of
the time cannot deliver human-like interactive behaviour, but deal well with task actions thanks to
the use of well-defined computational cognitive task models.

This paper presents an approach to the incorporation of cognitive task models into Information
State Update (ISU) based dialogue management in multimodal dialogue systems. Such integration
has important advantages. The ISU methodology has been applied successfully to a large variety
of interactive tasks, e.g. information seeking (Keizer et al., 2011), human-robot communication
(Peltason and Wrede, 2011), instruction giving (Lauria et al., 2001), and controlling smart home
environments (Bos et al, 2003). Several ISU development environments are available, such as
TrindiKit (Larsson and Traum, 2000), Dipper (Bos et al., 2003) and FLoRes (Morbini et al., 2014).
The ISU approach provides a flexible computational model for understanding and generation of di-
alogue contributions in term of effects on the information states of the dialogue participants. ISU
models account for the creation of (shared) beliefs and mechanisms for their transfer, and have well-
defined machinery for tracking, understanding and generation of natural human dialogue behaviour.
Cognitive modelling of human intelligent behaviour, on the other hand, enables deep understand-
ing of complex mental task processes related to human comprehension, prediction, learning and
decision making. Threaded cognition (Salvucci and Taatgen, 2008) and Instance-Based Learning
(Gonzalez and Lebiere, 2005) models developed within the ACT-R cognitive architecture (Ander-
son, 2007) are used to design a cognitive agent that can respond and adapt to new situations, in
particular to a communicative partner changing task goals and strategies. The agent is equipped
with Theory of Mind skills (Premack and Woodruff, 1978) and is able to use its task knowledge not
only to determine its own actions, but also to interpret the human partner’s actions, and to adjust its
behaviour to whom it interacts with. In this way, we expect to achieve flexible adaptive dialogue
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system behaviour in dynamic non-sequential interactions. The integrated cognitive agent does not
only compute the most plausible task action(-s) given its understanding of the partner’s actions and
strategies, provides alternatives and plans possible outcomes, but it also knows why it selects a cer-
tain action and can explain why its choices lead to the specific outcome. This enables the agent to
act as a cognitive tutor, supporting the development of the (meta)cognitive skills of a human learner.
Finally, the agent can be built with rather limited real or simulated dialogue data: it is supplied with
initial state-action templates encoding domain knowledge and the agent’s preferences, and the agent
further learns from the collected interactive experiences.

The present study investigates the core properties of cognitive models that underlie human
task-related and interactive dialogue behaviour, shows how such models provide a basis for dia-
logue management and can be integrated into a dialogue system, and assesses the resulting system
usability. As the use and evaluation case, our simulated agents and human actors participate in
(meta)cognitive skills training within negotiation based scenarios.

This paper is structured as follows. Section 2 discusses cognitive modelling, with a focus on
human interactive multitasking, learning and adaptive behaviour. We briefly discuss the ACT-R
architecture and provide details on an instance-based cognitive model that we used as a basis for
designing an agent’s decisions-making processes and generation of task-related actions. Section 3
describes an interactive learning scenario for the development of metacognitive skills in a multi-
issue bargaining setting. We provide an overview of existing approaches and systems for cognitive
tutoring tasks, as well as dialogue systems used in negotiation domains. We specify tasks and ac-
tions performed by negotiators, negotiation structures procedures and negotiation strategies. The
data collection scenario is outlined and the semantic annotations of the data are discussed. Section
4 specifies a multi-agent dialogue manager architecture that makes use of a dynamic multidimen-
sional context model and incorporates a cognitive task agent plus various interaction control agents
trained on the annotated data. Section 5 presents the Virtual Negotiation Coach, outlining the sys-
tem architecture and providing important details for key modules.1 Section 6 reports on the sys-
tem evaluation, where users’ subjective perception of effectiveness, efficiency and satisfaction were
correlated with various objective performance metrics. Evaluation results are also provided with
respect to the number and quality of agreements reached, estimated level of cooperativeness, and
acceptance of negative outcomes, as well as the subjective assessment of the skill training effects.
Section 7 summarises our findings and outlines future research.

2. Cognitive modelling

Cognitive models have been used for decades to explain and model human intelligent behaviour,
and have been successful in capturing a wide variety of phenomena across multiple domains such
as decision making (Marewski and Link, 2014), memory (Nijboer et al., 2016), problem solving
(Lee et al., 2015), task switching (Altmann and Gray, 2008), user models in tutoring applications
(Ritter et al., 2007), and neuroimaging data interpretation (Borst and Anderson, 2015).

One of the most widely researched cognitive architecture is ACT-R, see Anderson (2007), a the-
ory and platform for building models of human cognition, which accounts for hundreds of empirical

1Note that details on the integrated system are provided to enable the evaluation of the designed dialogue manager.
Since it is difficult to evaluate the dialogue manager as a separate module, its evaluation is performed as part of the user-
based evaluation of the integrated dialogue system with negotiation, tutoring and interactive capabilities. The detailed
description of the full dialogue system functionality is thus out of scope of this study.
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results obtained in the field of experimental psychology. ACT-R proposes a hybrid architecture that
combines a production system to capture the sequential, symbolic structure of cognition, with a
sub-symbolic, statistical layer to capture the adaptive nature of cognition.

Since available cognitive models produce detailed simulations of human (multi-)task perfor-
mance, they are also of interest for playing a role in a multi-agent setting. This application is
exploited in this study. It is of chief importance that our artificial agents exhibit plausible human
behaviour, notably a human-like way of learning and interacting. This means that such an agent
makes decisions and takes actions that humans might also make and take, but also that the agent
is influenced by its experiences and builds representations of the people it interacts with. Thus,
the agent should be able to (1) learn by collecting a variety of experiences, through instruction and
feedback, and through monitoring and reasoning about its own behaviour and that of others; (2)
adapt its interactive behaviour to a human dialogue partner’s knowledge, intentions, preferences
and competences; and (3) process and perform several actions related to the interactive tasks and
the roles it should play, e.g. as a partner or as a tutor.

2.1 Models of human learning: Reinforcement and Instance-Based Learning

Human learning involves acquiring and modifying knowledge, skills, strategies, beliefs, attitudes,
and behaviors. Learning may involve synthesizing different types of information (Schunk, 2012).
Learning is a relatively permanent change in behavior as a result of experience (Gross, 2016). People
learn from their successes and failures, from observing situations around them, and from imitating
the behaviour of others (Bandura, 2012). Two widely used learning models are Reinforcement
Learning (RL) and Instance-Based Learning (IBL).

Reinforcement learning is a formal model of action selection where the utility of different ac-
tions is learned by attending to the reward structure of the environment. Generally speaking, RL
works in a trial-and-error fashion attempting various actions and recording the reward gained by
those actions, see Sutton and Barto (1998). One of the limitations of RL as a model of human
decision making becomes apparent in environments where goals change. This may happen, for
example, due to changes in the environment or to newly obtained knowledge of the environment,
e.g. you need to mail a letter, you searched online for the closest post office, but on your way to
it you see a street mailbox, so you drop the letter in there. Initial goal changes may occur due to
the understanding and evaluation of partner behaviour. This often happens in negotiations where
a negotiator may revise his initial offers and make concessions dependent on the interpretation of
partner behaviour concerning these goals. RL models make decisions based solely on the learned
state-action utilities. Rewards are set a priori, are fixed and never revisited. If the goal changes,
the utilities representing the reward structure from the initial goal become irrelevant at best, and
subversive at worst (Veksler et al., 2012). Recently, serious efforts have been undertaken to solve
this issue combining concurrent learning (co-learning) of the system policy training and the policy
trained against simulated users. For instance, Georgila et al. (2014) and Xiao and Georgila (2018)
showed that in negotiation setting agents using multi-agent RL techniques are able to adapt to the
human users, also in situations which were not observed during training.

Humans, by contrast, employ their knowledge of the environment and their interactive partners
to make decisions for achieving new goals, e.g. acting from experience or by association. Our
memories are retrieved based on their recency and frequency of use (Anderson and Schooler, 1991)
and strategies are adapted with increasing task experience (Siegler and Stern, 1998).
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Human learning often occurs as a result of experience. Decisions are made by finding a prior
experience (an instance) that is similar to the current situation and/or most recently, frequently
used under comparable conditions, see Logan (1988); Gonzalez and Lebiere (2005). An instance
consists of a representation of the current state of the world (what do I know, what do I know about
others, what am I asked, what can I do, what has happened before), and an action to be taken in
that situation (give information, run tests, examine something, reason about others, change attitude,
etc.). Information is encoded in an instance as a state-actions template specifying decisions about
which activity to engage in and how to move from one activity to the other. Initial templates can be
designed (pre-programmed) by experts and/or modelled as the result of dialogue corpus analysis.
An IBL agent can start an interaction with an (almost) empty template, request information from
the partner and add it to the memory as the interaction proceeds. Newly created (partially) filled
instances are stored in a human-like memory that models forgetting, similarity and blending of
experiences. The most active instance is retrieved. Activation is based on history (e.g. frequency
and recency) and on similarity (e.g. how similar the instance is, given the context), see Section 4.2.1
for the specification of instances and activation functions for our interactive settings. An agent can
be also trained by giving it a set of instances (learning-by-instruction), which it can refine and/or
augment in actual interaction (learning-by-doing and learning-by-feedback).

RL is a useful paradigm where the possible strategies are relatively clear. If the underlying
interaction structure is very flexible, unclear or absent (i.e. hard to derive on the basis of the sys-
tem’s behaviour), IBL based models have advantages, see also Arslan et al. (2017). For instance,
whenever a new goal is given, the IBL model will employ its stored knowledge (instances) to make
informed goal-directed decisions. It does not need to learn the reward structure through trial-and-
error; rather, the decision what action will be performed is based on the computed activation level,
e.g. similarity between a past experience and the given current goal. Moreover, feedback can be
used in IBL to create an instance that contains the correct solution, i.e. the model will add an in-
stance of another strategy, whereas the RL model will punish the strategies that lead to a wrong
solution. Strategy selection, which is implicit in RL, is explicit in the IBL model which makes it
particularly suitable for tutoring applications. IBL is moreover robust to missing information due to
the partial matching component in the ACT-R activation function, e.g. when the agent does not have
access to the same information as his partner. We applied the instance-based learning approach to
create flexible cognitive agents, also because it requires far less experience than machine learning
methods that learn bottom-up, and the agent’s decision-taking behaviour incrementally improves
as its set of instances increases in size. Instance-based learning takes the middle ground between
expert systems, in which knowledge typically lacks flexibility, and bottom-up machine learning,
which requires extensive training data, and in which decisions are reached in an opaque manner.

2.2 Adaptive interactive behaviour

Interactive systems and interfaces tailored towards specific users have been demonstrated to outper-
form traditional systems in usability. Nass et al. (2005) present an in-car user study with a “virtual
passenger”. Experimental results indicate that subjective and objective criteria, such as driving qual-
ity, improve when the system adapts its voice characteristics to the driver’s emotion. Nass and Li
(2000) confirm in the study of spoken dialogues in a book shop that similarity attraction is important
for personality expression: matching the users’ degree of extroversion strongly influenced trust and
attributed intelligence.

40



TOWARDS INTEGRATION OF COGNITIVE MODELS IN DIALOGUE MANAGEMENT

These observations have triggered the development of interactive systems that model and react
to the users’ traits and states, for example by adapting the interaction based on language generation
techniques (Mairesse and Walker, 2005). In Gnjatovic and Rösner (2008) a gaming interface is
based on emotional states computed from the interaction history and actual user command. Nasoz
and Lisetti (2007) describe a user modelling approach for an intelligent driving assistant, which
derives the best system action in terms of driving safety, given estimated driver states.

The above approaches adapt locally, i.e. the adaptation decision is made at turn level with very
limited context and thus with no or very limited foresight. Reinforcement Learning has emerged
as a promising approach for long-term considerations. While early studies (Walker et al., 1998;
Singh et al., 2002) used RL to build strategies for simple systems, more complex paradigms are
represented by statistical models, see Frampton and Lemon (2009). However, when users with
different personalities in different states are systematically confronted with a learning system, most
studies resort to user simulation: Janarthanam and Lemon (2009) simulate users of different levels
of expertise, López-Cózar et al. (2009) simulate users with different levels of cooperativeness, and
Georgila et al. (2010) simulate interactions of old and young users.

These studies demonstrate that the simulation of different user types is expected to lead to
strategies which adapt to each user type. However, adaptivity has been not achieved at the level of
dynamically changing goals within one dialogue. Rewards that are used in dialogue policy learning
and optimizations are fixed a priori. Human learning however does not only involve strengthen-
ing of existing knowledge, compilation of new rules, collection of episodic experiences to improve
future decisions, etc., but often requires more explicit reasoning, assessing why a particular solu-
tion worked or not, and manipulating the task representation accordingly - this process is called
’metacognition’. In this study, metacognition plays two major roles: (1) it guides and regulates
system task behaviour; and (2) it improves a participant’s learning by triggering reasoning about
one’s own and partner behaviour.

Metacognitive processes concern reasoning about other people’s intentions and knowledge.
Mastering metacognitive skills is important in language use (Van Rij et al., 2010) and in play-
ing knowledge games (Meijering et al., 2012). A more elaborate form of these reasoning skills is
important in collaboration, negotiation and other social and interpersonal skills. People with well-
developed metacognitive skills are more concerned that their interactions will go well, and are able
to flexibly modify their actions during interaction in order to better adapt to the dynamics of the
situation, typically by using other people’s behaviour as a guide to their own (Ickes et al., 2006).
They are also better able to accomplish their goals, which appears to be the result of their superior
planning skills (Jordan and Roloff, 1997).

Metacognitive skills can be trained by humans and learned by a system. When learning, hu-
mans also observe their partners’ behaviour. In addition to using experiences to determine its own
decisions, an interactive agent can use them to interpret and reason about the behaviour of others
(i.e. humans). The ability to understand that other people have mental states, with desires, beliefs
and intentions, which can be different from one’s own, is called Theory of Mind (ToM; Premack
and Woodruff, 1978). In our application, the ToM methodology has been used to design agents that
can infer, explain, predict and correct a partners’ negotiation behaviour and negotiation strategies.

2.3 Multitasking in human-computer interaction

A dialogue system has at least three core tasks: (1) to monitor user dialogue behaviour; (2) to un-
derstand user dialogue contributions; and (3) to react adequately. Participation in a dialogue is thus
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a complex activity. Participants do not only need to exchange certain information, instruct another
participant, negotiate an agreement, discuss results or plan future actions, etc., but among other
things dialogue participants also share information about the processing of each others messages,
elicit feedback, manage the use of time, take turns, and monitor contact (Allwood, 2000). They
often use linguistic and nonverbal elements to address several interactive and task-related aspects at
the same time.

During interaction, a dialogue system is usually in the role of “speaker” (or “sender’)’ or in the
role of “addressee” (also called “hearer” or ”recipient”). The system may also play the role of a
side-participant who witnesses a dialogue without participating in it, see Clark (1996).

A dialogue system’s tasks depend also on the application domain in relation to the role(-s) it
plays, e.g. as a full-fledged interactive partner with equal responsibilities as a human one, as an
assistant, adviser or mediator, as a passive observer, as a tutor or coach, and so on. For our Virtual
Negotiation Coach application we identified the following key roles:

• Observer: system observes dialogue sessions between two or more humans and keeps track
of human-human dialogue without actively participating in it;

• Experiencer: system actively plays the role of one of the interaction participants, i.e. sender
and addressee;

• Mirror: system re-plays the user’s performance in a human-system dialogue in real time. The
user observes his own performance and has the opportunity to terminate, re-enter and re-play
the dialogue session from any point;

• Tutor or Coach: system provides feedback from ongoing formative or summative assessment
of the user performance in one or more tutoring sessions (Mory, 2004).

The system may play multiple roles simultaneously and/or interchangeably.
In most existing approaches to dialogue management the Dialogue Manager (DM) is able to

handle one particular dialogue task at a time. Most human activities however are essentially mul-
titasking. For example, driving a car consists of two main processes: one that keeps the car in the
middle of the driveway by looking at the road ahead of the car while operating the steering wheel
and the gas and brake pedals, and a second process that monitors the traffic environment (e.g., is
there a car behind you). Thus, human cognition can be conceptualized as a set of parallel cognitive
modules (e.g. vision, declarative memory, working memory, procedural memory, manual control,
vocal control, etc.). As long as multiple tasks do not need the same resources at the same time,
these tasks can be carried out in parallel without interference. In the case of the driving example,
if the driver is given an additional task, for example to operate a cell phone, he will abandon the
monitoring task due to lack of resources.

Threaded cognition, as the theory of parallel execution of tasks, has been proposed to explain
human multitasking behaviour: why and when certain tasks may be performed together with ease,
and which combinations pose a difficulty, what types of multitasking are disruptive, and when are
they most disruptive. Threaded cognition models have been used in a wide spectrum of multi-
tasking experiments (Salvucci and Taatgen 2008; 2010). This theory has been built on top of the
ACT-R cognitive architecture. We designed a multi-threaded Dialogue Manager with integrated
multitasking cognitive agent which, along with being an active dialogue participant with monitor-
ing, understanding and reacting tasks, is capable of providing feedback on partner performance and
which can reason about its own and a partner’s behaviour, and suggest alternative actions.
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3. Interactive training of metacognitive skills

3.1 Interactive learning and tutoring

Cognitive Tutoring Systems aim to support the development of metacognitive skills. Examples of
such systems are described in Bunt and Conati (2003); Azevedo et al. (2002); Gama (2004); Aleven
et al. (2006) and Baker et al. (2006). These systems rely on artificial intelligence and cognitive
science as a theoretical basis for analysing how people learn (Roll. et a., 2007).

Research by Chi et al. (2001) revealed that the interactivity of human tutoring drives its ef-
fectiveness. Interactive learning is a modern pedagogical approach that has devolved out of the
hyper-growth in the use of digital technology and virtual communication. Interactive learning is a
promising and powerful way to develop metacognitive skills. In this study, the interactivity of a
tutoring system is achieved through the use of multimodal dialogue. While many intelligent tutor-
ing dialogue systems have been developed in the past (Litman and Silliman, 2004; Riedl and Stern,
2006; Core et al., 2014; Moore et al., 2005; Paiva et al., 2004), to the best of our knowledge no
existing cognitive tutoring system makes use of natural spoken and multimodal dialogue.

Metacognitive skills are domain-independent and should be applicable in any learning domain
and in a variety of different learning environments, but despite their transversal nature, metacogni-
tive skills training can only be practiced within certain domains and activity types. Some systems
have been developed successfully for the domains of mathematics, physics, geometry, biology and
computer programming (MetaTutor, Azevedo et al., 2009; Rus et al., 2009: Harley et al., 2013).
For negotiation, metacognition has been empirically proven to be important since it significantly
improves decision-making processes (Aquilar and Galluccio, 2007).

For many existing human-computer negotiation systems, interactions are typically modelled
as a sequence of competitive offers where partners claim a bigger share for themselves. Valuable
work has been done on well-structured negotiations where a few parties interact with fixed interests
and alternatives, see e.g. Traum et al. (2008), Georgila and Traum (2011), Guhe and Lascarides
(2014), Efstathiou and Lemon (2015). In many real-life negotiations, parties negotiate not over
one but over multiple issues, see e.g. Cadilhac et al. (2013), where they have interests in reaching
agreements about several issues, and their preferences concerning these issues are not completely
identical (Raiffa et al., 2002a). Negotiators may have partially competitive and partially cooper-
ative goals, and may make trade-offs across issues in order for both sides to be satisfied with the
outcome. Parties can delay making a complete agreement on the first discussed issue, e.g. they
postpone making an agreement or make a partial agreement, until an agreement is reached on the
second one. They can revise their past offers, accept or decline any standing offer, make counter-
offers, etc. We consider such complex strategic negotiations as multi-issue integrative bargaining
dialogues, see Petukhova et al. (2016 and 2017). We aim at modelling these interactions with the
main goal to train metacognitive skills. Comparable work has been performed on modelling so-
called semi-cooperative multi-issue bargaining dialogues, see (Lewis et al., 2017), who proposed an
approach to end-to-end training of negotiation agents using a dataset of human-human negotiation
dialogues, and applying reinforcement learning. Their study presents a new form of planning ahead
where possible complete dialogue continuations are simulated - dialogue rollout. Our approach also
allows to compute the best alternative move at each negotiation stage and plan ahead the complete
negotiation. We compute about 420 outcomes per scenario, for 9 scenarios in total, each featuring
different participant preference profiles. Additionally, for tutoring purposes the model provides an
explanation for all alternative choices and how they lead to what outcomes. The two approaches
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differ with respect to the amount of data/resources used (our 50 vs 5808 dialogues); scenario com-
plexity (4 issues, 16 values and 9 different preference profiles in our scenario vs 3 types of items and
6 objects in Lewis et al., 2017); and modalities modelled (multimodal vs typed conversations). In
our study, we explicitly model various negotiation strategies, while in Lewis et al. (2017), evidence
of such strategies is observed, e.g. compromising or deceiving, and are implicitly learned but not
considered by design.

3.2 Models of multi-issue bargaining

Three main types of negotiations can be distinguished: distributive, joint problem-solving and in-
tegrative2. Distributive negotiation means that any gain of one party is made at the expense of the
other and vice versa; any agreement divides a fixed pie of value between the parties, see e.g. Walton
and McKersie (1965). The goal of joint problem-solving negotiations is, by contrast, to work to-
gether on an equitable and reasonable solution: negotiators will listen more and discuss the situation
longer before exploring options and finally proposing solutions. The relationship is important for
joint problem solving, mostly in that it helps trust and working together on a solution, see Beach
and Connolly (2005). In integrative bargaining, parties bargain over several goods and attributes,
search for an integrative potential (interest-based bargaining or win-win bargaining, see Fisher an
Ury, 1981). This increases the opportunities for cooperative strategies that rely on maximizing the
total value of the negotiated agreement (enlarging the pie) in addition to maximizing one’s own
value at the expense of the partner (dividing the pie).
The different types of negotiation are manifest mainly in how parties create and claim values. Ne-
gotiation starts with the Anchoring phase, in which participants introduce negotiation issues and
options. They also obtain and provide information about preferences, establishing jointly possible
values contributing to the Zone of Possible Agreement (ZOPA, Sebenius, 2007). Participants may
bring up early (tentative) offers, typically in the form of suggestions, and refer to the least desir-
able events - ‘Create Value’. The actual bargaining occurs in the ‘Claim Value’ phase, potentially
leading to adaptation, adjustment or cancelling the originally established ZOPA actions. Patterns
of concessions, threats, warnings, and early tentative commitments are observed here. Distributive
negotiations are more ‘claiming values’, while joint problem-solving negotiations are more ‘value
creating’ interactions, and integrative negotiations are a mix of ‘creating and claiming values’ nego-
tiations (Watkins, 2003a). In distributive negotiations the size of the ZOPA is mostly determined by
the ‘bottom lines’ of the opposite parties, which are formed by their respective best alternatives to
a negotiated agreement (BATNA), see Fisher and Ury (1981). In integrative bargaining the ZOPA
is mainly determined by the number of possible Pareto optimal outcomes. Pareto optimality reflects
a state of affairs when there is no alternative state that would make any partner better off without
making anyone worse off.

After establishing the ZOPA, negotiators may still cancel previously made agreements and nego-
tiations might be terminated. Negotiation Outcome is the phase associated with the “walk-away”
positions for each partner. Finally, negotiators can move to the Secure phase summing up and
restating negotiated agreements or termination outcomes. At this stage, strong commitments are
expressed and weak beliefs concerning previously made commitments and agreements are strength-
ened. Participants take decisions to move on with another issue or re-start the discussion. Figure 1

2A fourth type of negotiations is bad faith, where parties only pretend to negotiate, but actually have no intention to
compromise. Such negotiations often take place in a political context, see Cox (1958)
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depicts the general negotiation structure as described in Watkins (2003) and Sebenius (2007), and
observed in our data described in the next section.
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Figure 1: Negotiation phases associated
with negotiation structure,
based on Watkins (2003);
Sebenius (2007).

The negotiation outcome depends on the setting,
but also on the agenda and the strategy used by each
partner (Tinsley et al., 2002). The most common strat-
egy of novice negotiators observed is issue-by-issue
bargaining (see data collection below). Parties may
start with what they think are the ‘toughest’ issues,
where they expect the most sharply conflicting prefer-
ences and goals, or they may start to discuss the ‘eas-
iest’, most compatible options. Sometimes, however,
negotiators bring all their preferences on the table from
the very beginning. This increases the chance to reach
a Pareto efficient outcome, since a participant can ex-
plore the negotiation space more effectively, being able
to reason about each others’ goals, see e.g. Stevens
et al. (2016b). Defensive behaviour, i.e. not revealing
preferences, but also being misleading or deceptive, i.e.
not revealing true preferences, results in missed oppor-
tunities for value creation, see e.g. Watkins (2003);
Lax and Sebenius (1992). It has also been observed
that as a rule it is easier for a negotiator to bargain
down, i.e. to start with his highest preference and if
this is not accepted by the partner, go down and dis-
cuss sub-optimal options, than it is to bargain in, i.e.

to reveal his minimum goal and go up, offering preferences that are not necessarily shared by the
partner.

All the aspects mentioned above may influence negotiators’ strategies. Traum et al. (2008), who
also consider a multi-issue bargaining setting, but viewed as a multi-party problem-solving task,
define strategies as objectives rather than the orientations that lead to them. They distinguish seven
different strategies: find issue, avoid, attack, negotiate, advocate, success and failure. Other re-
searchers define negotiation strategies closely related to conflict management styles, i.e. the overall
approach for conducting a negotiation. Five main strategies are observed: competing (adversarial),
collaborating, compromising, avoiding (passive aggressive), and accommodating (submissive), see
Raiffa et al. (2002a); Tinsley et al. (2002). As in integrative negotiation, where the negotiators strive
to achieve a delicate balance between cooperation and competition (Lax and Sebenius, 1992), we
define two basic negotiation strategies: cooperative and non-cooperative.

Cooperative negotiators share information about their preferences with their opponents, are
engaged in problem-solving behaviours and attempt to find mutually beneficial agreements (De
Dreu et al., 2000). A cooperative negotiator prefers the options that have the highest collective
value. If not enough information is available to make this determination, a cooperative negotiator
will elicit this information from his opponent concerning. A cooperative negotiator will not engage
in positional bargaining3 tactics, instead, he will attempt to find issues where a trade-off is possible.

3Positional bargaining involves holding on to a fixed set of preferences regardless of the interests of others.
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o All outdoor smoking allowed 

o No smoking in public transportation 

o No smoking in public transportation and parks 

o No smoking in public transportation, parks and open air events 

 

SCOPE 

 
 

o Flyer and billboard campaign in shopping district 

o Anti-smoking posters at all tobacco sales points 

o Anti-smoking television advertisements 

o Anti-smoking advertisements across all traditional mass media 

 

CAMPAIGN 

 
 

o No change in tobacco taxes 

o 5% increase in tobacco taxes 

o 10% increase in tobacco taxes 

o 15% increase in tobacco taxes 

o 25% increase in tobacco taxes 

 

TAXATION 

 
 

o Police fines for minors in possession of tobacco products 

o Ban on tobacco vending machines 

o Police fines for selling tobacco products to minors 

o Identification required for all tobacco purchases 

o Government issued tobacco card for tobacco purchases 

 

ENFORCEMENT 

Figure 2: Preference card: example of values in four negotiated issues presented in colours: brighter
orange colours indicated increasingly negative options and brighter blue colours increas-
ingly positive options. When incorporated into the graphical interface, partners’ offers
visualized with red arrow (system) and green one (user).

Non-cooperative negotiators prefer to withhold their preferences in fear of weakening their
power by sharing too much, or they may not reveal true preferences deceiving and misleading the
partner. These negotiators focus on asserting their own preferred positions rather than exploring the
space of possible agreements (Fisher and Ury, 1981). A negotiator agent using this strategy will
rarely ask an opponent for preferences, and will often ignore a partner’s interests and requests for
information. Instead, a non-cooperative negotiator will find his own ideal offer, state it, and insist
upon it in the hope of making the opponent concede. He will threaten to end the negotiation or will
make very small concessions. The non-cooperative negotiator will accept an offer only if he can
gain a lot from it.

We also model a neutral (or cautious) strategy. Neutral actions describe behaviours that are not
indicative of either strategy above.

To sum up, our approach is based on the cognitive negotiation model of integrative multi-issue
bargaining, which incorporates potentially different beliefs and preferences of negotiation partners,
learns to reason about these beliefs and preferences, and accounts for changes in participants’ goals
and strategies.

3.3 Collection and annotation of negotiation data

For adequate modelling of human-like multi-issue bargaining behaviour, a systematic analysis of
collected and semantically annotated human-human dialogue data was performed. The collected
and analysed data also served for the IBL instance template definition as well as for the training
agent’s negotiation behaviour, e.g. various classifiers were built using this data, see Section 5. The
specific setting considered in this study involved a real-life scenario about anti-smoking legislation
in the city of Athens passed in 2015-2016. After a new law was enacted, many cases of civil
disobedience were reported. Different stakeholders came together to (re-)negotiate and improve the
legislation. The main negotiation partner was the Department of Public Affairs of the City Council
who negotiated with representatives of small businesses, police, insurances, and others.
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Dialogue Act
Relative frequency

(in %)
Dialogue Act

Relative frequency
(in %)

Communicative function
Modality/
Qualifier

Communicative function
Modality/
Qualifier

propositionalQuestion 2.0 suggest 10.0
checkQuestion 2.2 addressSuggest 1.4
setQuestion 10.3 acceptSuggest 2.0
choiceQuestion 0.6 declineSuggest 1.7
inform −> 30.3 offer −> 16.7

. . . non-modalized 41.3 . . . conditional 28.3

. . . prefer 30.4 . . . tentative 35.0

. . . disprefer 3.1 . . . final 36.7

. . . acquiesce 3.0 addressOffer 0.6

. . . need 2.0 acceptOffer −> 5.8

. . . able 19.0 . . . tentative 47.6

. . . unable 1.2 . . . final 52.4
agreement 10.3 declineOffer tentative 2.0
disagreement 4.1

Table 2: Distribution of task-related dialogue acts in the analysed multi-issue bargaining dialogues.

The anti-smoking regulations were concerned with four main issues: (1) smoke-free public areas
(scope); (2) tobacco tax increase (taxation); (3) anti-smoking program promotion (campaign); and
(4) enforcement policy and police involvement (enforcement), see Figure 2. Each of these issues
involves four to five most important negotiation values with preferences representing negotiation
positions, i.e. preference profiles. Nine cases with different preference profiles were designed.
The strength of preferences was communicated to the negotiators through colours. Brighter orange
colours indicated increasingly negative options; brighter blue colours increasingly positive options.

In the data collection experiments, each participant received the background story and a pref-
erence profile. Their task was to negotiate an agreement which assigns exactly one value to each
issue, exchanging and eliciting offers concerning 〈ISSUE;VALUE〉 options. Participants were ran-
domly assigned their roles. They were not allowed to show their preference cards to each other.
No further rules on the negotiation process, order of discussion of issues, or time constraints were
imposed. They were allowed to withdraw or re-negotiate previously made agreements within a
session, or terminate a negotiation.

16 subjects (young professionals aged between 19 and 25 years) participated in the experiments.
The resulting data collection consists of 50 dialogues of a total duration of about 8 hours, comprising
approximately 4.000 speaking turns (about 22.000 tokens).

The recorded speech was transcribed, segmented and annotated with ISO 24617-2 dialogue act
information. The ISO 24617-2 taxonomy (ISO, 2012; see also Bunt et al., 2010) distinguishes 9 di-
mensions, addressing information about a certain Task; the processing of utterances by the speaker
(Auto-feedback) or by the addressee (Allo-feedback); the management of difficulties in the speaker’s
contributions (Own-Communication Management) or that of the addressee (Partner Communica-
tion Management); the speaker’s need for time to continue the dialogue (Time Management); the
allocation of the speaker role (Turn Management); the structuring of the dialogue (Dialogue Struc-
turing); and the management of social obligations (Social Obligations Management). Additionally,
to capture the negotiation task structure, Task Management acts are introduced. These dialogue acts
explicitly address the negotiation process and procedure. This includes utterances for coordinating
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Negotiation Move Relative frequency (in %)
Offer 75.0
CounterOffer 12.4
Exchange 6.6
Concession 1.2
BargainIn 0.4
BargainDown 1.2
Deal 2.4
Terminate 0.8

Table 3: Negotiation moves and their relative frequencies in the annotated multi-issue bargaining
corpus.

the negotiators’ activities (e.g., “Let’s go issue by issue”) or asking about the status of the process
(e.g., “Are we done with the agenda?”). Task Management acts are specific for a particular task and
are often similar in form but different in meaning from Discourse Structuring acts, which address
the management of the interaction, e.g. “To sum up ...”, “Let’s move to a next round”.

At the negotiation task level, human-computer negotiation dialogue is often modelled as a se-
quence of offers. The offers represent participants’ commitments to a certain negotiation outcome.
In human negotiation, however, offers as binding commitments are rare and a larger variety of ne-
gotiation actions is observed, see Raiffa et al. (2002b). Participant actions are focused mainly on
obtaining and providing preference information. A negotiator often states his preferences without
expressing (strong) commitments to accept an offer that includes a positively evaluated option, or
to reject an offer that includes a negatively evaluated option. To capture these variations, we distin-
guished five levels of commitment using the ISO 24617-2 dialogue act taxonomy4 and its superset
DIT++5: (1) zero commitment for offer elicitations and preference information requests, e.g. by
questions; (2) the lowest non-zero level of commitment for informing about preferences, abilities
and necessities, e.g. in the form of modalized answers and informs; (3) an interest and consideration
to offer a certain value, i.e. suggestions; (4) weak (tentative) or conditional commitment to offer a
certain value; and (5) strong (final) commitment to offer a certain value, see Petukhova et al., 2017.

To model negotiation behaviour with respect to preferences, abilities, necessity and acquies-
cence, and to compute negotiation strategies as accurately as possible, we define several modal
relations between the modality ‘holder’ (typically the speaker of the utterance) and the target which
consists of the negotiation move (and its arguments), see Lapina and Petukhova (2017). Addition-
ally, to facilitate structuring the interaction and enable participants to interpret partner intentions,
dynamically changing goals and strategies efficiently, we defined a set of qualifiers attached to offer
acceptances or rejections and agreements, tentative or final.

Semantically, dialogue acts correspond to update operations on the information states of the
dialogue participants. They have two main components: (1) the communicative function, that spec-
ifies how to update an information state, e.g. Inform, Question, and Request, and (2) the semantic
content, i.e. the objects, events, situations, relations, properties, etc. involved in the update, see
Bunt (2000), Bunt (2014a). Negotiations are commonly analysed in terms of certain actions, such
as offers, counter-offers, and concessions, see Watkins (2003), Hindriks et al. (2007). We consid-

4For more information see Bunt (2009); visit also http://dit.uvt.nl/\#iso_24617-2
5http://dit.uvt.nl/
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ISO 24617-2 dimension Relative
frequency (in %)

Task 47.6
Task Management 10.3
AutoFeedback 18.7
AlloFeedback 2.3
Turn Management 6.6
Time Management 6.6
Discourse Structuring 4.6
Own Communication Management 2.1
Partner Communication Management na
Social Obligation Management 1.2

Table 4: Distribution of dialogue acts per ISO 24617-2 dimension in the multi-issue bargaining
corpus.

ered two possible ways of using such actions, also referred to as ‘negotiation moves’, to compute
the update semantics in negotiation dialogues. One is to treat negotiation moves as task-specific
dialogue acts. Due to its domain-independent character, the ISO 24617-2 standard does not define
any communicative functions that are specific for a particular kind of task or domain, but the stan-
dard invites the addition of such functions, and includes guidelines for how to do so. For example, a
negotiation-specific kind of OfferN function could be introduced for the expression of commitments
concerning a negotiation value.6 Another possibility is to use negotiation moves as the semantic
content of general-purpose dialogue acts. For example, a negotiator’s statements concerning his
preference for a certain option can be represented as In f orm(A,B,3o f f er(X ;Y )). We chose the latter
possibility and specified 8 basic negotiation moves, whose distribution in the analysed data is shown
in Table 3.

To sum up, the designed negotiation dialogue model accounts for several types of action per-
formed by negotiators: (1) task-related dialogue acts expressing negotiation preferences and com-
mitments; (2) qualified (‘modalized’) actions expressing participants’ negotiation strategies, see
Table 2; (3) negotiation moves specifying events and their arguments, see Table 3; and (4) commu-
nicative actions to control the interaction, see Table 4. A detailed specification of negotiation update
semantics can be found in Petukhova et al. (2017).

Semantic annotations were performed by three trained annotators who reached a good inter-
annotator agreement in terms of Cohen’s kappa of 0.71 on average, when performing segmenta-
tion and annotation simultaneously. In total, the corpus data contains more than 18.000 annotated
entities. Annotations were delivered in ISO DiAML format (ISO 24617-2, 2012),.diaml files
consisting of primary data in TEI-compliant representation, with 24617-2 dialogue act annotations.
The collected data and annotations is part of the Metalogue Multi-Issue Bargaining (MIB) corpus
(Petukhova et al., 2016) which is released through LDC.7.

6Negotiation ‘Offers’ may have a more domain-specific name, e.g. Bid for selling-buying bargaining.
7Please visit https://catalog.ldc.upenn.edu/LDC2017S11
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4. Multi-Agent Dialogue Manager: functional design and technical integration

As ACT-R based computational cognitive models of threaded cognition and IBL can be used to de-
sign cognitive agents that simulate task-related behaviour showing close to human decision-making
performance. If such agents have Theory of Mind (ToM) skills they can exhibit metacognitive capa-
bilities that are beneficial for better understanding and adequate modelling of adaptive and proactive
task behaviour. They cannot yet deliver natural human-like interactive performance, but combining
them with interactive agents based on advanced computational dialogue models opens new possibil-
ities. Inspired by the distinction that can be made between task control actions and dialogue control
actions (Bunt, 1994), we explored these possibilities by integrating a cognitive task agent into the
ISU-based dialogue manager as part of a dialogue system.

In the dialogue system design community, involving both theorists and practitioners, a clean
separation into two layers is observed. One layer deals with the task at hand, and the other with
the communicative performance itself, see e.g. Lemon et al. (2003). To design task managers
(agents), detailed task analysis, originally proposed by Annett et al. (1971), is often performed. The
method, in which a task is described in terms of a hierarchy of operations and plans, has been used
successfully to simulate human decision-making processes. In dialogue management, it has also
been deployed in the form of hierarchical task decomposition and expectation agenda generation
within the RavenClaw framework (Bohus and Rudnicky, 2003) and tested successfully in several
systems. Examples include the use of a tree-of-handlers in the Agenda Communicator (Xu and
Rudnicky, 2000), of activity trees in WITAS (Lemon et al., 2001), and of recipes in Collagen (Rich
et al., 1998). However, models based on task hierarchies, agendas, recipes and trees are rather
static and are difficult to apply for non-linear (multi-branching) or non-sequential interactions, like
multi-issue barganing dialogues.

A more flexible approach is the plan-based approach. For instance, in the TRIPS system (Allen
et al., 2001) a Task Manager is implemented that relies on planning and plan recognition, and
coordinates actions with a Conversational Manager. Plan construction and inference are activities
that can easily get very complex, however, and become computationally intractable.

Multi-agent architectures have been proposed for adaptive and flexible human-computer inter-
action, e.g. in the JASPIS speech application (Turunen et al., 2005), in the Open Agent Architecture
(Martin et al., 1999), and in Galaxy-II (Seneff et al., 1998).

An ISU-based approach to dialogue management has been used to handle multiple aspects (‘di-
mensions’) simultaneously, see Keizer et al. (2011); Petukhova (2011); Malchanau et al. (2015),
separating task control acts and various classes of dialogue control acts. The dialogue manager
tracks updates in multiple dimensions of the participants’ information states, as the effect of pro-
cessing incoming dialogue acts, and generates multiple task control acts and dialogue control acts
in response.

In order to capture the dynamics related to frequently changing participants’ interactive and
strategic goals, we propose a flexible adaptive form of multidimensional dialogue management
inspired by cognitive models of multitasking, learning and cognitive skills transfer. To this end,
we designed a Cognitive Task Agent and integrated it as part of an ISU-based multidimensional
Dialogue Manager (DM). The DM receives data in the form of the recognized dialogue acts, updates
the information state, and generates output.
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4.1 Information State: the multidimensional context model

According to the ISU approach, dialogue behaviour, when understood by a dialogue participant,
evokes certain changes in the participants’ information state or ‘context model’. Since we deal with
several different interactive, task-related and tutoring aspects, an articulate context model should
contain all the information considered relevant for interpreting such rich dialogue behaviour in
order to enable the system to generate an adequate reaction playing the role of a Negotiator or that
of a Tutor. An articulate dialogue model and context model have been proposed by Bunt (1999).
Complexities of natural human dialogue are handled by analysing dialogue behaviour as having
communicative functions in several dimensions, as discussed above.



FunctionalSegment(FS) :



start : 〈tokenindex|time point〉
end : 〈tokenindex|time point〉
verbatim : 〈tokenindex|time points = ‘token1′, . . .〉
prosody : 〈duration, pitch,energy, . . .〉

nonverbal : 〈


head〈elementindex|time points = expression1, . . .〉
hands〈elementindex|time points = expression1, . . .〉
f ace〈elementindex|time points = expression1, . . .〉
posture〈elementindex|time points = expression1, . . .〉

〉
sender : 〈participant〉

dial acts(DAs) : {〈



dimension(D) : 〈dim〉
comm f unction(CF) : 〈c f 〉
sem content(SC) : 〈content〉
sender/speaker : 〈participant〉
addressee(−s) : {〈participant〉}
f unc dependency :

[
antecedent : {〈DA〉}

]
f b dependency :

[
antecedent : {〈FS〉}

]
rhetorical relation :

[
antecedent : {〈DA〉}
type : 〈elaborate| . . .〉

]


〉}





Figure 3: Feature structure representation of a functional segment. Adopted from Petukhova, 2011.

The proposed context model has five components: (1) Linguistic Context (LC) with informa-
tion about (a) ’dialogue history’; (b) ’latest segment’ in the form of functional segment to which one
or multiple dialogue acts are assigned (see Fig. 3), and (c) ’dialogue future’ (or ’planned state’); (2)
Semantic Context (SemC) containing information about the task/domain; (3) Cognitive Context
(CC) representing information about the current and expected participants’ processing states; (4)
Perceptual/Physical Context (PC) having information about the perceptible aspects of the com-
munication process and the task/domain; (5) Social Context (SocC) containing information about
current speaker’s beliefs about his own and his partner’s social obligations and rights.

Each of these five components contains the representation of three parts: (1) the speaker’s beliefs
about the task, about the processing of previous utterances, or about certain aspects of the interactive
situation; (2) the addressee’s beliefs of the same kind, according to the speaker; and (3) the beliefs of
the same kind which the speaker assumes to be shared (or ’grounded’) with the addressee. A context
model for multi-party dialogues is more complex, containing representations of the speaker’s beliefs
about contexts of more than one addressee and possibly also of other participants (e.g. of the
audience in a debate). Figure 4 shows the context model with its component structure.

Each of the model parts can be updated independently while other parts remain unaffected. For
instance, the Linguistic Context is updated when dealing with linguistic/multimodal behavioural as-
pects and some interactive aspects, such as turn management; in the Cognitive Context participants’
processing states are modelled, as well as aspects related to time and own communication manage-
ment (e.g. speech production errors). The semantic context contains representations of task-related
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LingContext :


speaker :


dialogue history :

{
〈previous segments Fig. 3 〉

}
latest segment :

[
FS : Fig. 3
state = opening|body|closing

]
dialogue f uture : plan :

[
candidates : 〈list DAs〉
order : 〈ordered list DAs〉

]


partner : 〈partner linguistic context〉 (according to speaker)
shared : 〈shared linguistic context〉



SemContext :

 speaker task model : 〈belie f s〉
partner task model : 〈belie f s〉 (according to speaker)
shared task model : 〈mutual belie f s〉



CogContext :


speaker own proc state :

 proc problem : yes|no
problem input : FS
time need : negligible|small|substantial


partner proc state : 〈partner cognitive context〉(according to speaker)
shared : 〈shared cognitive context〉



PercContext :

 speaker :
[

own presence : positive|negative
own readiness : positive|negative

]
partner : 〈partner perceptual context〉(according to speaker)
shared : 〈shared perceptual context〉



SocContext :

 speaker :
[

interactive pressure : none|greet|apology|thanking| . . .
reactive pressure : {〈dialogue acts〉}

]
partner : 〈partner social context〉(according to speaker)
shared : 〈shared social context〉





Figure 4: Feature structure representation of the context model. Adopted from Malchanau et al.,
2015.

actions, in our scenario a participant’s negotiation moves and their arguments, partners’ negotiation
strategies, and the system’s tutoring goals and expectations on a trainee’s learning progress.

4.2 Cognitive Task Agent

The Cognitive Task Agent (CTA) operates on a structured dynamic Semantic Context as described
above, identifies the partner’s task-related goals, and uses a strategy to compute its next negotiation
move. It interprets and produces negotiation actions based on the estimation of partner’s preferences
and goals. The Agent adjusts its strategy according to the perceived level of the opponent’s coop-
erativeness. Currently, the Agent distinguishes three strategies: cooperative, non-cooperative and
neutral. The agent starts neutrally, requesting the partner’s preferences. If the Agent believes the
opponent is behaving cooperatively, it will react with a cooperative negotiation move. For instance,
it will reveal its preferences when asked for, it will accept the opponent’s offers, and propose con-
cessions or cross-issues trade-offs. It will use modality triggers of liking and ability. If the Agent
experiences the opponent as non-cooperative, it will switch to non-cooperative mode. It will stick
to its preferences and insist on acceptance by the opponent. It will repeatedly reject the opponent’s
offers using modal expressions of inability, dislike and necessity. It will rarely make concessions.
It will threaten to withdraw reached agreements and/or terminate negotiation. Such meta-strategies
for strategy adjustment are observed in human negotiation and coordination games, see Kelley and
Stahelski (1970), Smith et al. (1982). We explain in some detail how this is implemented.

4.2.1 INSTANCE DESIGN: CREATION, ACTIVATION AND RETRIEVAL

The Agent’s negotiation moves and their arguments are encoded as ‘instances’, represented as a
set of slot-value pairs corresponding to the Agent’s preference profile. Information encoded in
an instance concerns beliefs about Agent’s and partner’s preferences (state of the negotiation and
conditions), and Agent’s and estimated partner’s goals (actions), see Table 5. The Agent assumes
that the partner’s preferences are comparable to his, but values may differ. At the beginning of the
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Information type Explanation Source
Strategy The strategy associated with the instance negotiationMove, modality
My-bid-value-me The number of points the agent’s bid is worth to the agent

Preference profile

My-bid-value-opp The number of points that the agent believes its bid is worth to the user
Opp-bid-value-me The number of points the user’s bid is worth to the agent
Opp-bid-greater true if the user’s bid is at least as much as the agent’s current bid, false otherwise
Next-bid-value-me The number of points that the next best option is worth

The next best option is defined as the option closest in value to the current one
(Not including those that are worth more than the current option.)

Overall-value The total value of all options that have been agreed upon so far.
HistoryThis is a measure of how the negotiation is going.

If it is negative, negotiation is likely to result in an unacceptable outcome.
My-move The move that the agent should take in this context. Planned future

Table 5: Structure of an instance in the Cognitive Task Agent, adopted from Stevens et al. (2016a).

interaction, the Agent may have no or weak assumptions about the partner’s preferences. As the
interaction proceeds the Agent builds up more knowledge about the partner’s negotiation options.
The Agent achieves this by taking the perspective of its partner and using its own knowledge to
evaluate the partner’s strategy, i.e. apply ToM skills. The Agent’s memory holds three sets of
preference values: the Agent’s own preferences (zero ToM), the Agent’s beliefs about the user’s
preferences (first-order ToM), and the Agent’s beliefs about the user’s beliefs about the Agent’s
preference values (second-order ToM).

When a negotiation move and its arguments are recognized, the information is passed to the
CTA. The Agent constructs a retrieval instance and fills in as many slots as it can with the received
details and the current context. Subsequently, the CTA updates its own representation of the negoti-
ation state by retrieving the most active instance from its declarative memory. An instance i that is
used most recently and most frequently gets the highest activation value, which is derived from the
following equation, see Bothell (2004):

Ai = ln(
n

∑
j=1

t−d
j )+Logistic(0,s)

where n is the number of times an instance i has been retrieved in the past; t represents the amount
of time that has passed since the jth presentation or creation of the instance, and d is the rate of
activation decay.8 The rightmost term of the equation represents noise added to the activation level,
where s controls the noise in the activation levels and is typically set at about 0.25, consistent with
the value used in Lebiere et al. (2000). Thus, the equation effectively describes both the effects of
recency - more recent memory traces are more likely to be retrieved, and frequency - if a memory
trace has been created or retrieved more often in the past it has a higher likelihood of being retrieved.

An instance does not have to be a perfect match to a retrieval request to be activated. ACT-R
can reduce its activation according to the following formula used to compute partial matching Pi,
see Bothell (2004):

Pi = ∑
l

PMli

where Mli indicates the similarity value between the relevant slot value in the retrieval request (l)
and the corresponding slot instance i summed over all slot values in the retrieval request. P denotes
the mismatch penalty and reflects the amount of weighting given to the matching, i.e. when P is

8In the ACT-R community, 0.5 has emerged as the default value for the parameter d over a large range of applications,
Anderson et al. (2004).
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higher, activation is more strongly affected by similarity. We set the constant P high at 5, consistent
with the value used in Lebiere et al. (2000).9 The Agent will thus be able to retrieve past instances
for reasoning even when a particular situation has not been encountered before. Partial matching,
combined with activation noise, allows for flexibility in the Agent’s behaviour. The Agent will not
rigidly make the exact same moves every time.

For example, suppose the CTA retrieves the following instance:

instance-a
strategy cooperative the opponent’s strategy is cooperative
my-bid-value-me 4 the agent’s current offer is worth 4 points to him
opp-bid-value-me 1 the opponent’s offer is worth 1 point to the agent
opp-bid-greater true the opponent’s offer is equal or greater than agent’s current bid
next-bid-value-me 2 the next best option for the agent is worth 2 points
opp-move concede opponent changed its offer to one that was less valuable to him
my-move concede the agent repays the opponent by also selecting a less valuable option

Two pieces of information will be extracted from these instances: the strategy of the user (co-
operative) and an estimate of the user’s preference for the options mentioned in the move (1,true).
If there are other good options available, a cooperative negotiator will explore those options first
before insisting on his current position, so from this behaviour the Agent infers that it is dealing
with a cooperative negotiator with positive preferences on at least two issues. Now the Agent uses
its own context to choose an appropriate response to the user. Depending on how the user has acted,
and what the Agent knows (guesses) about the user’s preferences, the Agent chooses to respond
cooperatively, i.e. to concede.

4.2.2 MULTITASKING BEHAVIOUR

The CTA can reason about the overall state of the negotiation task, and attempts to identify the best
negotiation move for the next action. It computes: (1) the Agent’s counter-move, and (2) feedback
sharing the Agent’s beliefs about the user’s preferences and the user’s negotiation strategy. The
Agent may propose a strategically better alternative move that the user could have taken and explain
‘why’. As the result, the system is able to play simultaneously or interchangeably the four roles
specified in Section 2.1: Observer, Negotiator, Mirror and Tutor.

In the Observer mode, the Agent monitors and keeps track of all performed own and partner’s
actions and logs them. The created log files are used to evaluate the participants’ performance and
for system improvement (see Section 6).

As a Mirror, the Agent’s monitoring and interpretation results are immediately displayed to the
user. These displays include a transcript of the Agent’s and user’s utterances (as recognized by the
system), the Agent’s perceived cooperativeness level and the recognized partner’s preferences. The
Agent’s and partner’s most recent offers and estimated partner’s preferences are also flagged in the
dynamically updated preference card (Fig. 2). The latter can have certain tutoring effects as well,
since it may activate a user’s monitoring, reflection and regulating strategies, but also trigger a user’s
corrective actions in case of Agent processing failures.

As a Negotiator, the Agent takes into account the recognized partner negotiation strategy, the
Agent’s preferences, and the estimation of those of the partner, and computes the most appropriate
next negotiation move. This leads to relevant updates in the Semantic Context that give rise to goals

9To disable partial matching P can be set at 0.
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ID

Utterance DM input DM Information State DM output
(wording) DA D;CF SC=NM(I;V )/ CTA state DM update11 DA for

ID [dependence] modality /decision generation
A1 what do you want for scope da1 p1=offer(1;?v) neutral/elicit Wants(A,Know(A, p1)) task;setQuestion
C1 i think it would be fine Bel(C,Wants(A,Know(A, p1)))

if we stop smoking p2=offer(1;b)/ Bel(C,2p2)
in public transportation da2 task;answer[da1] prefer cooperative Wants(C,Know(A,2p2))

A2.1 okay Bel(A,Wants(C,Know(A,2p2))
A2.2 i would go for that point cooperative/ Bel(A,¬2p2))

da3 p2=offer(1;b) agree(A,1b) Wants(A,Know(C,3p2)) task;agreement
A2.3 i prefer that we do not cooperative/

increase taxes da4 p3=offer(2;a) offer(A,2a) Wants(A,Know(C,2p3)) task;inform
C2.1 this is not possible da5 task; p3=offer(2;a) non-cooperative/ Bel(C,Wants(A,Know(C,2p3)))

for us disagreement[da4] unable reject(C,2a) Wants(C,Know(A,¬3p3))
C2.2 i would like 5% tax

increase at least da6 task;inform - - -
A3 sorry i was distracted apology &

could you repeat da7 Bel(A,¬Interpreted(A,C2.2)) autoNegative
C3 sure da8 autoPositive[da7] Bel(C, Interpreted(C,A3))

I prefer 5% tax increase da9 task;inform p4=offer(2;b) non-cooperative/ Bel(C,Wants(A,Know(C,¬3p3))
prefer offer(C,2b) Wants(C,Know(A,2p4))

A4.1 okay da10 autoPositive[da9] p4=offer(2;b) Bel(A, Interpreted(A,C3)) autoPositive
A4.3 i will give you 5% if you p4=offer(2;b) Bel(A,Wants(C,Know(A,2p4))

Bel(A,3p4)
agree to ban all tobacco p5=offer(4;b) neutral/ Bel(A,2p5)
vending machines da11 p6=offer( exchange(A, Bel(A,3p6) task;offer

(2;b)→ (4;b)) (2b ∧ 4b)) Wants(A,Know(C,3p6))
C4 i think i can live with that da12 task; p6=offer( cooperative/agree(C, Bel(C,Wants(A,Know(C,3p6))

agreement[da11] (2;b)→ (4;b)) (2b→ 4b)) Bel(C,3p6)

Table 6: Example of a negotiation dialogue with processing and generation by the Dialogue Man-
ager. (A = agent (Business Representative); C = human negotiator (City Councilor); DA =
dialogue act; D = dimension; CF = communicative function; SC= semantic content; NM
= negotiation move; I = issue; V=value; Bel = believes; 3 = possible; 2 = preferable)

to perform a certain dialogue act, e.g. tentative Agreement. Other contexts may be also updated in
parallel and goals are created to perform, for example, turn-taking (Linguistic Context) and feedback
(Cognitive Context) actions, see next section. The Dialogue Manager passes dialogue act list for
generation, < DA1 = turnTake,DA2 = positiveAutoFeedback,DA3 = Task;Agreement >, where
DA1 is decided to be generated implicitly, DA2 - non-verbally by a smiling and nodding avatar and
verbally by ‘okay’, and DA3 is generated by the utterance ‘I can live with it’.

As a Tutor, the Agent shares its beliefs about the current negotiation state and its planned con-
tinuation, e.g. may offer strategically better user negotiation moves leading to higher quality nego-
tiation outcomes in terms of Pareto efficiency. After each action, the Agent is also able to provide
an explanation why decisions are made to perform certain actions. At the end of each negotiation
session summative feedback is generated in terms of estimated Pareto optimality, degree of cooper-
ativeness, and acceptance of negative outcomes. This type of feedback accumulates across multiple
consecutive negotiation rounds.

The execution of these shared and varied tasks is expected to have positive effects both on user
and system performance, enabling activation and improvement of metacognitive processes. More-
over, since these processes do not require additional resources (memory, processing and control),
but are model-inherent belief creation and transfer processes and characteristics (instance slots),
multiple tasks related to various roles can be executed by the DM in parallel without interference.
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4.2.3 DIALOGUE MANAGER STATE UPDATE: EXAMPLE

Table 6 provides an example of a dialogue between an agent A playing the role of the Business Rep-
resentative and a human negotiator C in the role of the City Councilor. The CTA starts neutrally. A
elicits an offer from C on the first issue and does this in the form of a Set Question. The understand-
ing that a certain dialogue act is performed leads to corresponding context model updates.10 If the
partner reacts to the agent’s elicitation by sharing his preferences in C1, he is evaluated by the agent
as being cooperative. The agent’s preferences are not identical but not fully conflicting either: it is
possible for the agent to agree with the opponent’s preferences accepting his offer in A2.2, where
A believes that the offer made in C1 is not the most preferred one but still acceptable/possible for
A.11 The CTA stays in the cooperative mode. If the negotiator’s preferences differ from the options
proposed by the partner, he may refuse to accept the partner offer as in C2.1 and may offer another
value which is more preferable for him, i.e. perform a counter-offer move ( C2.2 repeated in C3 after
the agent signaled that his processing was unsuccessful. The CTA interprets the partner’s strategy
as being non-cooperative and switches his strategy to neutral, proposing to exchange offers (in A4.2)
that still aim at the better deal for himself. If this is again rejected, the agent will apply the non-
cooperative strategy and insist on his previous proposal expressed in A2.2, otherwise he will either
elicit an offer for the next issue or propose an offer himself.

The agent computes the partner’s negotiation strategy using the linguistic modality expressed
in the partner’s utterance and the type of the dialogue act performed. The collected data was used
to train classifiers in the supervised setting to make such predictions, see Section 5. To assess
the minimal amount of data required to detect the partner’s negotiation strategy reliably, a series
of learnability experiments was performed. To achieve an accuracy higher than 75%, about 1300
training instances are used. It was noticed the classifier performance further benefits from adding
more training data. An accuracy of 83% was achieved on a training set comprising 3800 instances,
so twice as many as in the first iteration and consuming almost the entire human-human MIB cor-
pus. The system showing this performance was evaluated, see Section 6. Follow-up experiments
indicated that adding more data (e.g. evaluation and simulated data) further improves the classifica-
tion performance, although not significantly, gaining 1% in accuracy when adding additional 1000
instances.

4.3 Dialogue control

Task actions account for less than half of all actions in our negotiation data, see Table 4. Other
frequently occurring acts are concerned with Task Management, Discourse Structuring, Feedback
and Social Obligations. Along with moving towards a final set of agreements, negotiators need to
take care how to optimally structure and manage the negotiation and the interaction. In multi-issue
bargaining, negotiators have a variety of task management strategies. They may discuss issues se-
quentially or bargain simultaneously about multiple options, making trade-offs across issues. They
may withdraw and re-negotiate previously reached agreements. All these decisions require explicit
communicative actions. The Task Management acts are recognized and generated by the system,
and are modelled as part of the system’s Semantic Context containing, along with the informa-
tion about the speaker’s beliefs about the negotiation domain, information concerning task progress

10A detailed specification of dialogue act update semantics is provided in Bunt (2014b) and Petukhova (2011).
11 We provide here a simplified representation of the participants’ information states as tracked and updated by the

DM. The full specification of participants’ information states and their updates can be found in Petukhova et al. (2017).
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Processing level Latest dialogue act Previous dialogue act Planned dialogue act
Communicative Function Negotiation Move

Perception unknown unknown any
Request Repeat and/or
AutoNegative

Interpretation

unknown offer(x) any
Accept(offer(x)) or
Reject(offer(x))

unknown offer(unknown) any
Question(offer(?))
and/or AutoNegative

any unknown any
Request Repeat or
Rephrase and/or
AutoNegative

unknown unknown
Accept(offer(x)) or
Reject(offer(x))

Question(offer(?)) or
Inform(offer(y))

unknown unknown offer(x) Question(offer(y))

Question unknown
Accept(offer(x)) or
Reject(offer(x)) Inform(offer(y))

Table 7: Decision-making support for the system’s feedback strategies concerning perception and
interpretation of task-related actions, and expected dialogue continuation. Note: x 6=y.

and success. A Task Planner as part of the Task Manager (see Fig. 3) takes care of updates and
generation processes of this type.

Acts related to negotiators’ perception of the partner’s physical presence and readiness to start,
continue or terminate the interaction as well as participants’ beliefs concerning the availability and
properties of communicative and perceptual channels are modelled as part of the Perceptual Context.
Dialogue behaviour addressing these aspects is important, in particular, these actions are considered
for generation, since the system’s multimodal behaviour related to Contact Management is embod-
ied by a virtual character (full body avatar). The Contact Manager takes care of updates and the
generation of these acts. A participant’s beliefs concerning the interaction structure (i.e. history,
present and future states) and beliefs concerning topic shifts are modeled as a part of the Linguistic
Context; the Discourse Structuring module takes care of the updates and generation specific for the
interaction management and monitoring.

4.4 Validity checking, repair and clarification strategies

For an interactive system it is important to know that its contributions are understood and accepted
by the user, as well as to signal the system’s processing of the same kind. Conversation is a bi-
lateral process - that is, a joint activity, and speaking and listening are not autonomous processes
- conversational partners monitor their own processing of the exchanged utterances as well as the
processing done by the others, see Clark and Krych (2004) for discussion. Given the bilateral na-
ture of conversation, interlocutors can construct and provide feedback on both their own processing
(auto-feedback) as and on that by the other (allo-feedback).

Feedback is crucial for successful communication. Feedback can be provided at different levels
of processing the communicative behaviour of interlocutors. Allwood et al. (1993) and Clark (1996)
notice that interlocutors need to establish contact and gain or pay attention to each others behaviour,
in order be involved in conversation. A speaker’s behaviour needs to be perceived (i.e. heard, seen)
or identified (Clark, 1996). Perceived behaviour should be interpreted, i.e. interlocutors should be
able to extract the meaning of each other’s behaviour. The constructed interpretation needs to be
evaluated against one’s information state: if it is consistent with the current information state it
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Processing level Latest dialogue act Previous dialogue act Validity Planned dialogue act
Communicative Function Negotiation Move

Evaluation

Inform terminate any valid stop negotiation
Accept offer(x) final Offer(x) valid Inform(deal(x))
any other
than Accept offer(x) final Offer(x) invalid

Auto/AlloFeedback:
Question(?offer(x))

Accept deal(x)) Inform(deal(x)) valid

DiscourseStructuring:
TopicShift
TaskManagement:Suggest(next issue)
DiscourseStructuring:
Closing

Reject or
Accept offer(x) Suggest(offer(x)) valid

Inform(offer(y));
Question(offer(y))

Reject or
Accept offer(x) Inform(offer(x)) valid

Inform(offer(y));
Question(offer(y))

Question offer(x) Inform(deal(x)) valid Inform(deal(x))
Reject offer(x) Reject(offer(x)) valid Reject(offer(x))
final Offer or Accept offer(x) Accept(offer(x)) valid Accept(offer(x))
Inform
Suggest
Offer

offer(x) Accept(offer(y)) valid if x= ¬y
Accept(offer(?x)) or
Reject(offer(x))

Inform offer(y) Inform(deal(x)) invalid
interpret as Accept(deal(x))
if x=y otherwise
Reject(offer(x))

Accept offer(x)
any other
than Suggest or
Inform(offer(x))

invalid

interpret as Inform(offer(x))
or Suggest(offer(x))
if x=y otherwise
generate Auto- or AlloNegative

Reject offer(x)
any other
than Suggest or
Inform(offer(x))

invalid
interpret as Inform(offer(y))
or Suggest(offer(y)) if x¬y otherwise
generate Auto- or AlloNegative

Accept offer(x) Inform(terminate) invalid
interpret as Accept(terminate) and
generate Auto- or AlloNegative

Reject offer(x) Inform(terminate) invalid
interpret as Accept(terminate) and/or
generate Auto- or AlloNegative

Inform deal(x) Inform(terminate) invalid
Question(offer(?)) and/or
Auto- or AlloNegative

Inform
Suggest
Offer

offer(x) Accept(offer(y)) invalid if x=y
Question(offer(?x));
Accept(offer(y)) and/or
Auto- or AlloNegative

Inform
Suggest
Offer

offer(x) Reject(offer(y)) invalid if x=y
Question(offer(?x));
Reject(offer(y))and/or
Auto- or AlloNegative

Inform deal(x) Reject(offer(x)) invalid
Reject(offer(x));
Question(offer(?x)) and/or
Auto- or AlloNegative

Table 8: Decision-making support for the system’s recovery and clarification strategies concerning
evaluation of task-related actions, and expected dialogue continuation. In this table, valid
stands for the state that can be recovered from the available information, otherwise invalid
- state that cannot be automatically recovered and requires activation of the clarification
strategy. Note: x 6=y.
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Processing level Latest dialogue act Previous dialogue act Preferences Validity Planned dialogue act
Communicative Function Negotiation Move

Execution

Inform
Suggest
Offer

offer(x) any negative valid
Reject(offer(x)) and/or
Inform(offer(y)) and/or
AutoNegative

Inform
Suggest
Offer

offer(x) any positive valid
Accept(offer(x)) and/or
Inform(offer(y))
and/or AutoNegative

Inform
Suggest
Offer

offer(x) any neutral valid
Accept(offer(x)) and/or
Inform(offer(y))

Inform deal(x) no Accept(offer(x)) any invalid
Reject(deal(x));
Question(offer(?x)) and/or
AutoNegative

Inform deal(x) Reject(offer(x)) any invalid
Reject(deal(x));
Question(offer(?x)) and/or
AutoNegative

inform terminate no final offer(x) any invalid
Question(offer(?x)) and/or
AutoNegative

Table 9: Decision-making support for the system’s feedback strategies concerning execution of
task-related actions. In this table, valid stands for the state that can be recovered from
the available information, otherwise invalid - state that cannot be automatically recovered
and requires activation of the clarification strategy. Note: x 6=y

can be incorporated into that state; if it is inconsistent, this can be reported as negative feedback.
The incorporation of new information, and the performance of other mental and physical actions in
response to communicative behaviour is called the execution or application (Bunt, 2000). A speaker
may provide feedback (feedback giving) or elicit feedback (feedback eliciting).

As for positive feedback acts, explicitly signalled acceptances are generated, either verbally
or non-verbally. We also consider generation of multimodal expressions of implied and entailed
positive feedback (see Bunt (2007, 2012)) for strategic reasons, e.g. to provide more certainty due
to potentially erroneous automatic speech recognition output.

Detected difficulties and inconsistencies in recognition, interpretation, evaluation and execu-
tion need to be resolved immediately if these problems are serious enough to impede further task
performance; such problems are reported accordingly. Problems due to deficient recognition and
interpretation are frequent in spoken human-computer dialogue systems, but rarely observed in the
collected human-human dialogue data. Good news however is that humans generally exhibit cer-
tain re-occurring behavioural patterns when their processing fails. For our scenario and dialogue
setting we incorporated observations and analyses of other available dialogue resources such as
the human-human AMI and HCRC MapTask corpora (Carletta, 2006; Anderson et al., 1991), and
human-human and human-computer DBox quiz game data (Petukhova et al., 2014; 2015).

Observations from human-human and human-computer dialogues resulted in the definition of
feedback strategies at the level of perception (recognition) and interpretation mostly comprising
corrections and requests to repeat or rephrase (Table 7), at the level of evaluation reporting inconsis-
tencies/(in)validity due to certain logical constraints, given the grounded negotiation history (Table
8), and at the level of execution reporting inability to accept an offer or to reach an agreement due
to the negotiator’s preference profile (Table 9). Certain system processing flaws can be recovered
from the information available to the system, some problems are too severe to continue the dialogue
successfully and trigger feedback acts (clarification requests). In total, about 30 clarification and
recovery strategies have been defined and evaluated (see also Section 6).

59



MALCHANAU, PETUKHOVA AND BUNT

 

Candidate dialogue acts 
Dialogue acts for 

presentation 

 

Update & Generation processes/threads 

Interpretation 

Manager/ Fusion 

Fission/Generation 

Manager 

Consistency evaluation/conflict resolution 

 

Process Manager 

'Internal Clock'/Timer 

'Information State'/Contexts 

Linguistic Semantic Cognitive Perceptual Social 

Task Manager 

 

Auto-/Allo Feedback  

Social Obligations Management 

Turn 

Management 

Discourse Structuring 

Cognitive 

Task Agent 

(CTA) 

 

Task 

Planner 

Contact Management 

Figure 5: Cognitive Task Agent (grey box) incorporated into the Dialogue Manager architecture:
fused dialogue act information is passed to the Dialogue Manager from the Interpretation
Manager for context model update and next action(-s) generation which are ‘fissed’ in
different output modalities; both processes are regulated by the Process Manager.

Information concerning successes and failures in the processing of a partners’ dialogue contri-
butions are modelled as part of the Cognitive Context (see Fig. 3).

Thus, dialogue control acts present an important part for any interaction. In a shared cultural
and linguistic context, choices concerning the frequency of such actions and the variety of expres-
sions are rather limited. Conventional forms are mostly used to greet each other, to apologize, to
manage the turns and the use of time, to deal with speaking errors, and to provide or elicit feedback.
Models of dialogue control behaviour once designed can therefore be applied in a wide range of
communicative situations. The use of task-related dialogue acts, by contrast, is more application-
specific. The separation between task-related and dialogue control actions is therefore not only a
cost-effective solution, but also allows designing flexible architectures and combinations of different
modelling approaches and techniques, resulting in more robust and rich system behaviour.

4.5 Dialogue Manager architecture

The above considerations have resulted in a Dialogue Manager consisting of multiple Agents cor-
responding currently to six ISO 24617-2 or DIT++ dimensions12: the Task Manager with the inte-
grated CTA and Task Planner for task control, the Auto/Allo Feedback Agent, the Turn Manager,
the Discourse Structuring Manager, the Contact Manager, and the Social Obligations Manager.

The Dialogue Manager (DM) is designed as a set of processes (‘threads’) that receive data,
update the information state, and generate output. Additionally, consistency checking and con-
flict resolution is performed to avoid that the context model would be updated with inconsistent or

12The set of Agents may in future be extended to include all nine ISO 24617-2 dimensions and possibly other addi-
tional dimensions.
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conflicting information and incompatible dialogue acts are generated, see also Petukhova (2011).
Figure 5 presents the overall DM architecture. First, data are received from the Fusion/Interpretation
module. Next, the information state (‘context model’) is updated based on the received input. The
Process Manager decides what parts of the context model to update. Following receiving and up-
dating, the output based on the analysis of the information state is generated. The output presents
the ordered list of dialogue acts which is sent to the Fission module, see next Section for complete
dialogue system architecture.

5. The Virtual Negotiation Coach: design and evaluation

As a proof of concept, and for assessing the potential value of the integration of a cognitive agent
into a dialogue manager, we designed the Virtual Negotiation Coach (VNC), an interactive system
with the functionality described in the scenario for data collection (Section 3.2). The VNC gets
a speech signal, recognizes and interprets it, identifies relevant actions and generates multimodal
actions, i.e. speech and gestures of a virtual negotiator and positive and negative visual feedback
for tutoring. Figure 6 shows the VNC architecture and processing workflows.

Speech signals are recorded from multiple sources, such as wearable microphones, headsets for
each dialogue participant, and an all-around microphone placed between participants. The speech
signals serve as input for two types of further processing: Automatic Speech Recognition (ASR),
leading to lexical, syntactic, and semantic analysis, and prosodic analysis concerned with voice
quality, fluency, stress and intonation of speech. The Kaldi-based ASR component incorporates
acoustic and language models developed using various available data sources: the Wall Street Jour-
nal WSJ0 corpus13, HUB4 News Broadcast data14, the VoxForge corpus15, the LibriSpeech corpus16

and AMI project data17. In total, about 759 hours of data has been used to train an acoustic model.
The collected in-domain negotiation data is used as language model adaptation. The background
language model is based on a combination of different corpora, like the approach taken to train the
acoustic model. The ASR performance is measured at 34.4% Word Error Rate (WER), see Singh
et al. (2017)18. The ASR outputs a single best word sequence without any scores. Prosodic proper-
ties were computed automatically using PRAAT (Boersma and Weenink, 2009) such as minimum,
maximum, mean, and standard deviation of pitch, energy, voicing and speaking rate.19

The ASR output is used by the negotiation moves and dialogue act classifiers. Negotiation
moves specify events and their arguments represented as NegotiationMove(ISSUE;VALUE). Con-
ditional Random Field models for sequence learning (CRF, Lafferty et al. (2001)) are trained to
predict three types of classes (move, issue and value) and their boundaries in ASR n-best strings:

13https://catalog.ldc.upenn.edu/ldc93s6a
14https://catalog.ldc.upenn.edu/ldc98s71
15http://www.voxforge.org/
16http://www.openslr.org/12/
17http://groups.inf.ed.ac.uk/ami/corpus/
18It should be noticed that the ASR performance has been measured when interacting with non-native English speak-

ers, who significantly varied in language skills level and speech fluency, some having a rather strong Greek accent.
19We computed both raw and normalized versions of these features. Speaker-normalized features were obtained by

computing z-scores (z = (X-mean)/standard deviation) for the feature, where mean and standard deviation were calculated
from all functional segments produced by the same speaker in the debate session. We also used normalizations by the
first speaker turn and by prior speaker turn.
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logue acts. Fused dialogue act information is passed to the Dialogue Manager for context
model update and next action generation. The generated system response is rendered or
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van Helvert et al., 2016)

.

negotiation move, issue, preference value. A ten-fold cross-validation using 5000 words of tran-
scribed speech from the negotiation domain yielded an F-score of 0.7 on average.

For the recognition of the intentions encoded in participants’ utterances various machine learn-
ing techniques have been applied, such as Support Vector Machine (SVM, Boser et al., 1992), Lo-
gistic Regression (Yu et al., 2011), AdaBoost (Zhu et al., 2009), and the Linear Support Vector Clas-
sifier (Vapnik, 2013). F-scores ranging between 0.83 and 0.86 were obtained, which corresponds to
state-of-the-art performance, see Amanova et al. (2016). The incremental token- and chunk-based
dialogue act CRF-classifiers showed a performance of .80 F-scores on average, see Ebhotemhen
et al. (2017). After extensive testing, a non-incremental SVM-based classifier has been integrated
into the VNC system. The SVM-based modality classifiers show accuracies in the range between
73.3 and 82.6% Lapina and Petukhova (2017). Finally, information from the Linguistic Context
related to the dialogue history has been used to ensure context-dependent interpretation of dialogue
acts. Additionally, the trainee has a choice to select options using a graphical interface as depicted
in Figure 2. As task progress support, partner offers and possible agreements are visualized with
red (system) and green arrows (user).

62



TOWARDS INTEGRATION OF COGNITIVE MODELS IN DIALOGUE MANAGEMENT

The system’s Fusion module currently fuses interpretations from two modules obtaining full
semantic representations of user speech contributions. In the future, we will extend the system to
other non-verbal modalities by integrating modern sensing technology at the input level. Given the
dialogue acts provided by the Dialogue Manager, the Fission module generates responses splitting
their parts into different modalities, such as Avatar20 and Voice (TTS21) for negotiation actions, and
visual feedback for tutoring actions. The latter includes a representation of the negotiators’ current
cooperativeness, visualized by happy and sad face emoticons.

At the end of each negotiation session, summative feedback is generated specifying the number
of points gained or lost for each partner, the number of negative agreements, and the Pareto optimal-
ity of the reached agreements. All messages exchanged between modules are in the standard TEI
and ISO DiAML formats.

6. Evaluation

It is generally not a trivial task to evaluate the performance of a Dialogue Manager as a single
module due to its dependency on the quality of its potentially erroneous inputs.

The performance of a DM is often evaluated as a part of the integrated dialogue system in a
user-based fashion, by letting end users assess their interaction with the system. Such assessment
is typically based on the satisfaction of the users with the completion of the task. For example,
PARADISE, one of the most widely-used evaluation models (Walker et al., 1997), predicts user
global satisfaction given a set of parameters related to task success and dialogue costs. Satisfaction
is calculated as the arithmetic mean of nine judgements on different quality aspects rated on 5-point
Likert scales. Subsequently, the relation between task success and dialogue costs parameters and the
mean human judgement is estimated carrying out a multivariate linear regression analysis. Another
way to evaluate a dialogue system is on the basis of interaction with computer agents that substitute
human users and emulate user behaviour, see e.g. López-Cózar et al. (2006). The various types of
users and system factors can be systematically manipulated, e.g. interactive, dialogue task and error
recovery strategies.

Several sets of parameters have been recommended for spoken dialogue system evaluation,
ranging from a single BLEU score metric for end-to-end system evaluation (Wen et al., 2017), to
seven parameters related to the entire dialogue (duration, response delay, number of turns) defined
in Fraser (1998) and 52 parameters in Möller (2004) to meta-communication strategies (number of
help requests, correction turns), to the system’s cooperativity (contextual appropriateness of system
utterances), to the task which can be carried out with the help of the system (task success, solution
quality), as well as to the speech input performance of the system (word error rate, understanding
error rate).

As for measuring satisfaction, various questionnaires have been proposed: nine satisfaction
questions defined within PARADISE (Walker et al., 2000); 44 evaluative statements of the Sub-
jective Assessment of Speech System Interfaces (SASSI) questionnaire (Hone and Graham, 2001);
53 evaluative statements in REVU (Report on the Enjoyment, Value, and Usability, Dzikovska et
al., 2011); 24 bipolar adjective pairs defined in the Godspeed questionnaire (Bartneck et al., 2009);
122 evaluative statements in the Questionnaire for User Interface Satisfaction (QUIS version 7.0,

20Commercial software of Charamel GmbH has been used, see Reinecke (2003)
21Vocalizer of Nuance, http://www.nuance.com/for-business/text-to-speech/vocalizer/

index.htm, was integrated.
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Evaluation criteria
Human- Human-
human computer

Number of dialogues 25 (5808) 185 (NA)
Mean dialogue duration (in turns per dialogue) 23 (6.6) 40 (NA)
Agreements (%) 78 (80.1) 66 (57.2)
Pareto optimal (%) 61 (76.9) 60 (82.4)
Negative deal (%) 21 (NA) 16 (NA)
Cooperativeness rate (%) 39 (NA) 51 (NA)

Table 10: Comparison of human-human and human-agent negotiation behaviour. Adopted from
Petukhova et al. (2017). In brackets the best results reported by Lewis et al. (2017) for
comparison. NA stands for not applicable, i.e. not measured.

Chin et al., 1988). The absence of standard performance metric sets and questionnaires for dialogue
system evaluation makes it difficult to compare the results from different studies, and the various
existing dialogue system evaluation results exhibit great differences.

One of the common practices is to evaluate an interactive system or user interface by measuring
usability, using well-defined observable and quantifiable metrics (see ISO 9241-11 and ISO/IEC
9126-4 standards for usability metrics for effectiveness, efficiency and satisfaction). For this pur-
pose, the usability perception questionnaire was constructed assessing eight main factors: task com-
pletion and quality, robustness, learnability, flexibility, likeability, ease of use and usefulness of the
application,. The questionnaire has sufficient internal consistency reliability (Cronbach’s alpha of
0.87) and comprises 32 evaluative statements22.

Using this questionnaire, we collected human judgements concerning the system performance in
28 evaluation sessions, with 28 participants aged 25-45, all professional politicians or governmental
workers. Nine negotiation scenarios were used, based on different negotiator preference profiles,
see Petukhova et al. (2016). Participants were assigned a Councilor role and a random scenario.
The questionnaire allows human judgements to be linked to the performance of certain modules (or
module combinations), see Table 11. User judgements were presented in 5-point Likert scales.

The usability of the VNC system was measured in terms of effectiveness, efficiency and satis-
faction. Previous research suggests that there are differences in perceived and actual performance
(Nielsen, 2012): performance and perception scores are correlated, but they are different usability
metrics and both need to be considered when conducting quantitative usability studies. In our de-
sign, subjective perception of effectiveness, efficiency and satisfaction were correlated with various
performance metrics and interaction parameters to assess their impact on the qualitative usability
properties. We computed bi-variate correlations to determine possible factors impacting user per-
ception of the system usability and the performance metrics and interaction parameters derived from
logged and annotated evaluation sessions.

As performance metrics, system and user performance related to task completion rate23 and
its quality24 were computed. We also compared system negotiation performance with human per-

22The usability questionnaire is available at https://docs.google.com/forms/d/e/
1FAIpQLSf1H110UOflMGAqtT0HacBD7T0nIHqLOKoi1qS7o28wLzizSw/viewform

23 We consider the overall negotiation task as completed if parties agreed on all four issues or parties came to the
conclusion that it is impossible to reach any agreement.

24 Overall task quality was computed in terms of number of reward points the trainee gets at the end of each negotiation
round and summing up over multiple repeated rounds; and Pareto optimality (coefficient from 0 to 1) which reflects a
state of affairs when there is no alternative state that would make any partner better off without making anyone worse off.
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formance on the number of agreements reached, the ability to find Pareto optimal outcomes, the
degree of cooperativeness, and the number of negative outcomes25. It was found that participants
reached a lower number of agreements when negotiating with the system than when negotiating
with each other, 66% vs 78%. Participants made a similar number of Pareto optimal agreements
(about 60%). Human participants show a higher level of cooperativity when interacting with the
system, i.e. 51% of the actions are perceived as cooperative. This may mean that humans were
more competitive when interacting with each other. A lower number of negative deals was observed
for human-agent pairs, 21% vs 16%. Users perceived their interaction with the system as effective
when they managed to complete their tasks successfully reaching Pareto optimal agreements by
performing cooperative actions but avoiding excessive concessions. Our results differ from those
reported in Lewis et al. (2017) for both the human-human and the human-agent setting, see Table
10. However, as noticed above, due to differences in tasks, scenario and interactive setting it is hard
to draw clear comparative conclusions. Nevertheless, we can conclude that the implemented CTA
is capable of making decisions and performing actions similar to those of humans. No significant
differences in this respect were observed between human-human and human-system interactions.

As for efficiency, we assessed temporal and duration dialogue parameters, e.g. time elapsed
and number of system and/or user turns to complete the task (or a sub-task) and the interaction as
a whole. We also measured the system response time, the silence duration after the user completed
his utterance and before the system responded. Weak negative correlation effects have been found
between user perceived efficiency and system response delay, meaning users generally found the
system reaction and the interaction pace too slow. Dialogue quality is often assessed measuring
word and sentence error rates (Walker et al., 1997; López-Cozár et al., 2006) and turn correction
ratio (Danielli and Gerbino, 1995). Many designers have noticed, however, that it is not so much
how many errors the system makes that contributes to its quality, but rather the system’s ability
to recognize errors and recover from them. This contributes to the perceived system robustness
and is appreciated by users. Users also value if they can easily identify and recover from their
own mistakes. All system’s processing results were visualized to the user in a separate window,
which contributes to the system observability. The repair and recovery strategies used by the system
and the user were evaluated by two expert annotators, whose agreement was measured in terms of
kappa. Repairs were estimated as the number of corrected segments, recoveries as the number of
regained utterances which were partially failed at recognition and understanding, see also Danieli
and Gerbino (1995). While annotators agreed that repair strategies were applied adequately, longer
dialogue sessions due to frequent clarifications are undesirable.

The VNC is evaluated to be relatively easy to interact with (4.2 Likert points). However, users
found an instruction round with a human tutor prior to the interaction useful. Most users were
confident enough to interact with the system on their own, some of them however found the system
too complex and experienced difficulties in understanding certain concepts/actions. A performance
metric which was found to negatively correlate with system learnability is user response delay, the
silence duration after the system completed its utterance and the user proposed a relevant dialogue
continuation. Nevertheless, the vast majority of users learned how to interact with the system and

25 We considered negative deals as flawed negotiation action, i.e. the sum of all reached agreements resulted in
an overall negative value meaning that the trainee made too many concessions and selected mostly dispreferred bright
‘orange’ options (see Figure 2).
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Usability metric Perception Performance
RAssessment Metric/parameter Value

effectiveness
mean rating score

effectiveness
4.08

Task completion rate23; in % 66.0 .86*
(task completeness)

effectiveness
(task quality)

Reward points24; mean, max.10 5.2 .19
User’s Action Error Rate (UAER, in %)25 16.0 .27*
Pareto optimality24; mean, between 0 and 1 0.86 .28*
Cooperativeness rate; mean, in % 51.0 .39*

efficiency (overall)
mean rating score

efficiency
4.28

System Response Delay (SRD); mean, in ms 243 -.16
Interaction pace; utterance/min 9.98 -.18
Dialogue duration; in min 9:37 -.21
Dialogue duration; average, in number of turns 56.2 -.35*

efficiency (learnability) 3.3 (mean) User Response Delay (URD); mean, in ms 267 -.34*

efficiency (robustness) 3.2 (mean) System Recovery Strategies (SRS); correctly activated (Cohen’s κ) 0.89 .48*
User Recovery Strategies (URS); correctly recognized (Cohen’s κ) 0.87 .45*

efficiency (flexibility) 3.8 (mean) Proportion spoken/on-screen actions; mean, in % per dialogue 4.3 .67*

satisfaction (overall)

aggregated
per user

ranging between
40 and 78

ASR Word Error rate; WER, in % 22.5 -.29*
Negotiation moves recognition; accuracy, in % 65.3 .39*
Dialogue Act Recognition; accuracy, in % 87.8 .44*
Correct responses (CR)29; relative frequency, in % 57.6 .43*
Appropriate responses (AR)28; relative frequency, in % 42.4 .29*

Table 11: Summary of evaluation metrics and obtained results in terms of correlations between
subjective perceived system properties and actions, and objective performance metrics
(R stands for Pearson coefficient; * = statistically significant (p < .05)

complete their tasks successfully in consecutive rounds. We observed a steady decline in user
response delays from round to round.26

Users appreciated the system’s flexibility. The system offered the option to select continuation
task actions using a graphical interface on a tablet in case the system processing failed entirely. The
use of concurrent multiple modalities was positively evaluated by the users. It was always possible
for users to take initiative in starting, continuing and wrapping up the interaction, or leave these
decisions to the system. At each point of interaction, both the user and the system were able to
re-negotiate any previously made agreement.27

As overall satisfaction, the interaction was judged to be satisfying, rather reliable and useful,
however, less natural (2.76 Likert points). The latter is largely attributed to rather tedious mul-
timodal generation and avatar performance. System actions were judged by expert annotators as
appropriate28, correct29 and easy to interpret. Other module-specific performance parameters re-
flect commonly used metrics derived using reference annotations such as various types of error
rates, accuracy, and κ scores measuring agreement between the system performance and human
annotations of the evaluation sessions. Recognition and interpretation mistakes turned out to have
moderate negative effects on user satisfaction. Table 11 summarizes the results.

26For now, this is just a general observation; this metric will be taken into consideration in future test-retest experi-
ments.

27Performance metrics related to initiative and task substituitivity aspects and their impact on the perceived usability
will be an issue for the future research.

28 A system action is appropriate given the context if it introduces or continues a repair strategy.
29 A system action is considered as correct if it addresses the user’s actions as intended and expected. These actions

exclude recovery actions and error handling.
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Session recordings, system recognition and processing results, as well as the generated feedback
were logged and converted to .anvil format in order to be able to use the Anvil video analysis
tool30 to view, browse, search, replay and edit negotiation sessions. Anvil allows for automatic gen-
eration of some summative feedback about one or multiple sessions. Moreover, applied prediction
models can be evaluated by the negotiators and tutors on the fly, and edited and corrected annotated
data can be used to retrain the system.

With the satisfaction questionnaire we were also able to evaluate the system’s tutoring perfor-
mance. Participants indicated that system feedback was valuable and supportive. However, they
expected more visual real-time feedback and more explicit summative feedback on their learning
progress. Most respondents think that the system presents an interesting form of skills training, and
would use it as part of their training routine.

7. Limitations and future work

We have presented an approach to dialogue management that integrates a cognitive task agent able
to reason about the goals and strategies of human partners, and to successfully engage in a negoti-
ation task. This agent leverages established cognitive theories, namely ACT-R and instance-based
learning, to generate plausible, flexible behaviour in this complex setting. We also argued that
separate modelling of task related and dialogue control actions is beneficial for current and future
dialogue system designs. The implementation introduced a theoretical novelty in instance-based
learning for Theory of Mind skills and integrating this in the dialogue management of a tutoring
system. The Cognitive Task Agent used instance knowledge not only to determine its own actions,
but also to interpret the human user’s actions, allowing it to adjust its behaviour to its mental image
of the user. This work was successful: human participants who took part in evaluation experiments
were not able to discern human users from simulated task agents (see also Stevens et al. (2016b)),
and an agent using Theory of Mind prompted users to use that themselves. Our evaluation results
suggest that the dialogue system with the integrated cognitive agent technology delivers plausible
negotiation behaviour leading to reasonable user acceptance and satisfaction.

The work presented here has certain limitations. Instance templates in the instance-based learn-
ing model, slots, values and preferences for both partners were largely pre-programmed, which
limits their general applicability. In the future, the agent will learn from real human-human dia-
logues, e.g. extract negotiation issues and values, and assess their importance. We will also enable
the collaborative creation and real-time interactive correction, (re-)training and generation of agents
by domain experts and target users. We aim to design authoring tools supporting agent learning and
re-training across different situations.

Furthermore, we successfully integrated cognitive, interaction and learning models into a base-
line proof-of-concept system. More research is needed on the connections between the cognitive
models and the interaction and learning models, and overall mechanisms need to be further specified
that underlie communication strategies depending on information about the current state of the task,
participant (learning) goals, a participant’s affected state, and the interactive situation/environment.
Negotiation is more than the exchange of offers, decision making or problem solving; it involves a
wide range of aspects related to feelings, emotions, social status, power, and interpersonal relations,
context and situation awareness. For instance, tentative cooperative actions can engender a positive
reaction and build trust over time, while social barriers can trigger interactive processes that often

30ww.anvil-software.de
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lead to bad communication, polarization and conflict escalation (Sebenius, 2007). Such dynamics
may be observed in negotiations involving participants of different genders, races, or cultures (Nouri
et al., 2017). Aspects related to social and interpersonal relations like dominance, power, politeness,
emotions and attitudes deserve substantially more attention.

Finally, recent advances in digital technologies open new possibilities for us to interact with our
environment, as well as for our environment to interact with us. Everyday artefacts which previously
were not aware of the environment at all are turning into smart devices and smart toys with sensing,
tracking or alerting capabilities. This offers many new ways for real-time interaction with highly
relevant, social and context-aware agents in multimodal multisensory environments which, in turn,
enables designing rich immersive interactive experiences. An immersive and highly personalised
coaching experience can be achieved by elaborate analysis and effective use of interaction data,
applying advanced affective signal processing techniques and rich domain knowledge. A dialogue
model that includes a comprehensive account of the user’s feelings, motivations, and engagement
will form a foundation for a new generation of interactive tutoring systems. A direction that is not
yet fully explored is to optimise in a system for the user’s feelings, motivation and engagement, as
opposed to optimise for pure functional efficiency.
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Sebastian Möller. Quality of telephone-based spoken dialogue systems. Springer Science & Busi-
ness Media, 2004.

David Moore, Yufang Cheng, Paul McGrath, and Norman Powell. Collaborative virtual environ-
ment technology for people with autism. Journal of the Hammill Institute on Disabilities, 20(4):
231243, 2005.

Fabrizio Morbini, David DeVault, Kenji Sagae, Jillian Gerten, Angela Nazarian, and David Traum.
Flores: a forward looking, reward seeking, dialogue manager. In Natural interaction with robots,
knowbots and smartphones, pages 313–325. Springer, 2014.

Edna Mory. Feedback research revisited. Handbook of research on educational communications
and technology, 2:745–783, 2004.

Fatma Nasoz and Christine Lisetti. Affective user modeling for adaptive intelligent user interfaces.
In Human-Computer Interaction. HCI Intelligent Multimodal Interaction Environments, pages
421–430. Springer, 2007.

Clifford Nass and Kwan Min Lee. Does computer-generated speech manifest personality? an
experimental test of similarity-attraction. In Proceedings of the SIGCHI conference on Human
Factors in Computing Systems, pages 329–336. ACM, 2000.

Clifford Nass, Ing-Marie Jonsson, Helen Harris, Ben Reaves, Jack Endo, Scott Brave, and Leila
Takayama. Improving automotive safety by pairing driver emotion and car voice emotion. In
CHI’05 Extended Abstracts on Human Factors in Computing Systems, pages 1973–1976. ACM,
2005.

Jakob Nielsen. User satisfaction vs. performance metrics. Nielsen Norman Group, 2012.

Menno Nijboer, Jelmer Borst, Hedderik van Rijn, and Niels Taatgen. Contrasting single and multi-
component working-memory systems in dual tasking. Cognitive psychology, 86:1–26, 2016.

Elnaz Nouri, Kallirroi Georgila, and David Traum. Culture-specific models of negotiation for virtual
characters: multi-attribute decision-making based on culture-specific values. AI & society, 32(1):
51–63, 2017.

Ana Paiva, Joao Dias, Daniel Sobral, Ruth Aylett, Polly Sobreperez, Sarah Woods, Carsten Zoll, and
Lynne Hall. Caring for agents and agents that care: Building empathic relations with synthetic
agents. In Proceedings of the Third International Joint Conference on Autonomous Agents and
Multiagent Systems-Volume 1, pages 194–201. IEEE Computer Society, 2004.

Julia Peltason and Britta Wrede. The curious robot as a case-study for comparing dialog systems.
AI magazine, 32(4):85–99, 2011.

75



MALCHANAU, PETUKHOVA AND BUNT

Volha Petukhova. Multidimensional Dialogue Modelling. PhD dissertation. Tilburg University, The
Netherlands, 2011.

Volha Petukhova, Martin Gropp, Dietrich Klakow, Anna Schmidt, Gregor Eigner, Mario Topf, Ste-
fan Srb, Petr Motlicek, Blaise Potard, John Dines, et al. The DBOX corpus collection of spoken
human-human and human-machine dialogues. In Proceedings of the 9th International Confer-
ence on Language Resources and Evaluation (LREC 2014). European Language Resources As-
sociation (ELRA), 2014.

Volha Petukhova, Harry Bunt, Andrei Malchanau, and Ramkumar Aruchamy. Experimenting with
grounding strategies in dialogue. In Proceedings of the GoDial 2015 Workshop on the Semantics
and Pragmatics of Dialogue, Goteborg, Sweden, 2015.

Volha Petukhova, Christopher Stevens, Harmen de Weerd, Niels Taatgen, Fokie Cnossen, and An-
drei Malchanau. Modelling multi-issue bargaining dialogues: Data collection, annotation design
and corpus. In Proceedings 9th International Conference on Language Resources and Evaluation
(LREC 2016). ELRA, Paris, 2016.

Volha Petukhova, Harry Bunt, and Andrei Malchanau. Computing negotiation update semantics in
multi-issue bargaining dialogues. In Proceedings of the SemDial 2017 (SaarDial) Workshop on
the Semantics and Pragmatics of Dialogue, Saarbrücken, Germany, 2017.

David Premack and Guy Woodruff. Does the chimpanzee have a theory of mind? Behavioral and
Brain sciences, 1(04):515–526, 1978.

Howard Raiffa, John Richardson, and David Metcalfe. Negotiation analysis: the science and art of
collaborative decision making. Harvard University Press, 2002a.

Howard Raiffa, John Richardson, and David Metcalfe. Negotiation analysis: The science and art
of collaborative decision making. Harvard University Press, 2002b.

Alexander Reinecke. Designing commercial applications with life-like characters. Lecture notes in
computer science, pages 181–181, 2003.

Charles Rich and Candace Sidner. Collagen: A collaboration manager for software interface agents.
User Modeling and User-Adapted Interaction, 8:3:149–184, 1998.

Mark Riedl and Andrew Stern. Believable agents and intelligent story adaptation for interactive
storytelling. In International Conference on Technologies for Interactive Digital Storytelling and
Entertainment, pages 1–12. Springer, 2006.

Steven Ritter, John Anderson, Kenneth Koedinger, and Albert Corbett. Cognitive tutor: Applied
research in mathematics education. Psychonomic bulletin & review, 14(2):249–255, 2007.

Ido Roll, Vincent Aleven, Bruce McLaren, and Kenneth Koedinger. Can help seeking be tu-
tored? searching for the secret sauce of metacognitive tutoring. In R. Luckin, KR Koedinger,
and J. Greer, editors, Artificial Intelligence in Education: Building Technology Rich Learning
Contexts that Work, volume 158 of Frontiers in Artificial Intelligence and Applications, pages
203–210. IOS Press, 2007.

76



TOWARDS INTEGRATION OF COGNITIVE MODELS IN DIALOGUE MANAGEMENT

Vasile Rus, Mihai Lintean, and Roger Azevedo. Automatic detection of student mental models
during prior knowledge activation in metatutor. International Working Group on Educational
Data Mining, 2009.

David Sadek. Dialogue acts are rational plans. In Proceedings of the ESCA/ETRW Workshop on the
Structure of Multimodal Dialogue, pages 19–48, Maratea, Italy, 1991.

Dario Salvucci and Niels Taatgen. Threaded cognition: an integrated theory of concurrent multi-
tasking. Psychological review, 115(1):101, 2008.

Dario Salvucci and Niels Taatgen. The multitasking mind. Oxford University Press, 2010.

Dale H Schunk. Learning theories an educational perspective sixth edition. Pearson, 2012.

James Sebenius. Negotiation analysis: Between decisions and games. Advances in Decision Anal-
ysis: From Foundations to Applications, page 469, 2007.

Stephanie Seneff, Ed Hurley, Raymond Lau, Christine Pao, Philipp Schmid, and Victor Zue.
Galaxy-ii: A reference architecture for conversational system development. In Proceedings of
the 5th International Conference on Spoken Language Processing, 1998.

Iulian Serban, Alessandro Sordoni, Yoshua Bengio, Aaron Courville, and Joelle Pineau. Build-
ing end-to-end dialogue systems using generative hierarchical neural network models. In AAAI,
volume 16, pages 3776–3784, 2016.

Robert Siegler and Elsbeth Stern. Conscious and unconscious strategy discoveries: A microgenetic
analysis. Journal of Experimental Psychology: General, 127(4):377, 1998.

Mittul Singh, Youssef Oualil, and Dietrich Klakow. Approximated and domain-adapted lstm lan-
guage models for first-pass decoding in speech recognition. In Proceedings of the 18th Annual
Conference of the International Speech Communication Association (INTERSPEECH), Stock-
holm, Sweden, 2017.

Satinder Singh, Diane Litman, Michael Kearns, and Marilyn Walker. Optimizing dialogue man-
agement with reinforcement learning: Experiments with the njfun system. Journal of Artificial
Intelligence Research, 16:105–133, 2002.

Leasel Smith, Dean Pruitt, and Peter Carnevale. Matching and mismatching: The effect of own limit,
other’s toughness, and time pressure on concession rate in negotiation. Journal of Personality and
Social Psychology, 42(5):876, 1982.

Christopher Stevens, Harmen de Weerd, Fokie Cnossen, and Niels Taatgen. A metacognitive agent
for training negotiation skills. In Proceedings of the 14th International Conference on Cognitive
Modeling (ICCM 2016), 2016a.

Christopher Stevens, Niels Taatgen, and Fokie Cnossen. Instance-based models of metacognition
in the Prisoner’s Dilemma. Topics in cognitive science, 8(1):322–334, 2016b.

Richard Sutton and Andrew Barto. Reinforcement learning: An introduction, volume 1(1). MIT
press Cambridge, 1998.

77



MALCHANAU, PETUKHOVA AND BUNT

Catherine Tinsley, Kathleen O’Connor, and Brandon Sullivan. Tough guys finish last: The perils
of a distributive reputation. Organizational Behavior and Human Decision Processes, 88(2):
621–642, 2002.

David Traum, Johan Bos, Robin Cooper, Staffan Larsson, Ian Lewin, Colin Matheson, and Massimo
Poesio. A model of dialogue moves and information state revision. TRINDI project deliverable
D2.1, 1999.

David Traum, Stacy Marsella, Jonathan Gratch, Jina Lee, and Arno Hartholt. Multi-party, multi-
issue, multi-strategy negotiation for multi-modal virtual agents. In International Workshop on
Intelligent Virtual Agents, pages 117–130. Springer, 2008.

Markku Turunen, Jaakko Hakulinen, K-J Raiha, E-P Salonen, Anssi Kainulainen, and Perttu Prusi.
An architecture and applications for speech-based accessibility systems. IBM Systems Journal,
44(3):485–504, 2005.

Joy Van Helvert, Volha Petukhova, Christopher Stevens, Harmen de Weerd, Dirk Börner, Peter
Van Rosmalen, Jan Alexandersson, and Niels Taatgen. Observing, coaching and reflecting: Met-
alogue - a multi-modal tutoring system with metacognitive abilities. EAI Endorsed Transactions
on Future Intelligent Educational Environments, 16(6), 2016.

Jacolien Van Rij, Hedderik Van Rijn, and Petra Hendriks. Cognitive architectures and language
acquisition: A case study in pronoun comprehension. Journal of Child Language, 37(3):731–
766, 2010.

Kurt Vanlehn. The behavior of tutoring systems. International journal of artificial intelligence in
education, 16(3):227–265, 2006.

Vladimir Vapnik. The nature of statistical learning theory. Springer Science & Business Media,
2013.

Vladislav Veksler, Christopher Myers, and Kevin Gluck. An integrated model of associative and re-
inforcement learning. Technical report, AIR FORCE RESEARCH LAB WRIGHT-PATTERSON
AFB OH, 2012.

Marilyn Walker, Diane Litman, Candace Kamm, and Alicia Abella. PARADISE: A framework for
evaluating spoken dialogue agents. In Proceedings of the 8th conference on European Chapter
of the Association for Computational Linguistics, pages 271–280. Association for Computational
Linguistics, 1997.

Marilyn Walker, Jeanne Fromer, and Shrikanth Narayanan. Learning optimal dialogue strategies: A
case study of a spoken dialogue agent for email. In Proceedings of the 36th Annual Meeting of the
Association for Computational Linguistics and 17th International Conference on Computational
Linguistics-Volume 2, pages 1345–1351. Association for Computational Linguistics, 1998.

Marilyn Walker, Candace Kamm, and Diane Litman. Towards developing general models of usabil-
ity with paradise. Natural Language Engineering, 6(3-4):363–377, 2000.

Richard Walton and Robert McKersie. A behavioral theory of labor negotiations: An analysis of a
social interaction system. Cornell University Press, 1965.

78



TOWARDS INTEGRATION OF COGNITIVE MODELS IN DIALOGUE MANAGEMENT

Michael Watkins. Analysing complex negotiations. Harvard Business Review, December, 2003.

Tsung-Hsien Wen, David Vandyke, Nikola Mrksic, Milica Gasic, Lina Rojas-Barahona, Pei-Hao
Su, Stefan Ultes, and Steve Young. A network-based end-to-end trainable task-oriented dialogue
system. In Proceedings of the 15th European Chapter of the Association for Computational
Linguistics (EACL 2017), Valencia, Spain, 2017.

Jason Williams and Steve Young. Partially observable markov decision processes for spoken dialog
systems. Computer Speech & Language, 21(2):393–422, 2007.

Jason Williams, Antoine Raux, Deepak Ramachandran, and Alan Black. The dialog state tracking
challenge. In Proceedings of the 10th Annual Meeting of the Special Interest Group on Discourse
and Dialogue (SIGdial 2013), pages 404–413, 2013.

Gang Xiao and Kallirroi Georgila. A comparison of reinforcement learning methodologies in two-
party and three-party negotiation dialogue. In Proceedings of the 31st International Florida
Articial Intelligence Research Society Conference, pages 217–220, 2018.

Wei Xu and Alexander Rudnicky. Task-based dialog management using an agenda. In Proceedings
of the ANLP-NAACL 2000 Workshop on Conversational Systems, pages 42–47, 2000.

Steve Young. Probabilistic methods in spoken–dialogue systems. Philosophical Transactions of
the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 358(1769):
1389–1402, 2000.
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