
Tilburg centre for Cognition and Communication P.O. Box 90153
Tilburg University 5000 LE Tilburg, The Netherlands
http://www.uvt.nl/ticc Email: ticc@uvt.nl

Copyright c© Harry Bunt 2013.

March 14, 2013

TiCC TR 2013–001

A methodology for designing semantic
annotations

Harry Bunt
TiCC, Tilburg University

Abstract

This paper presents a methodology for designing languages for semantic annotation.
Central in this methodology is the specification of representation formats as render-
ings of conceptual structures defined by an abstract syntax as set-theoretic constructs.
An ideal representation format is defined as one that is able to represent all the con-
ceptual distinctions made in the abstract syntax, and of which each representation
encodes one and only one structure defined by the abstract syntax. The semantics of
an annotation language is defined for its abstract syntax and is shared by all its repre-
sentation formats; every ideal representation format is therefore convertible through a
meaning-preserving mapping to any other ideal representation format. The methodol-
ogy is called CASCADES after its four stages: Conceptual analysis, Abstract syntax,
Semantics and Concrete syntax for Annotation DESign.
The CASCADES model derives its usefulness from supporting a systematic design
process for semantic annotations, giving due attention to the conceptual and seman-
tic issues underlying choices in annotation formats, including support in the form of
procedures for how to move from one stage of the design process to another, in par-
ticular for how to construct an abstract syntax given a conceptual analysis; how to
define a semantics for a given abstract syntax; and how to map an abstract syntax to
an XML-based concrete syntax.
Three applications of the CASCADES methodology are discussed: (1) the design of
an ISO standard for dialogue annotation starting from a conceptual analysis; (2) the
analysis of existing annotation schemes such as those of the Penn Discourse Treebank
and TimeML, as a basis for the development of ISO standards for semantic annota-
tion; (3) the detection and repair of deficiencies in existing annotation schemes.



1 Introduction

The linguistic annotation of a text often takes the form of attaching certain labels, such as part of speech
labels or named entity tags, to textual elements. In the case of semantic annotation, however, the in-
formation to be captured by annotations typically has a complexity which requires more than simple
labeling, and instead uses expressions in an annotation language. For example, Pustejovsky et al. (2003;
2005; 2007) developed the language TimeML for the annotation of texts with information relating to
time and events.

An annotation language being a formal language, one might expect its definition to follow the usual
setup of formal language definitions and to consist of a syntax, which defines a class of well-formed
expressions, and a semantics, which specifies what these expressions mean. The definition of XML,
which is the basis of most current representation formats used for annotation, is an exception in this
respect, since it consists of a syntax only; the interpretation of its expressions is left to the user (human
or machine). This creates a fundamental problem for applying XML in semantic annotation: semantic
annotations are meant to capture part of the meaning of the annotated text, but if the annotations don’t
have a well-defined meaning, then why would they capture meaning better than the text itself? Bunt &
Romary (2002) therefore formulated the requirement of semantic adequacy for a semantic annotation
language, which says that such a language should have a well-defined semantics.

The Linguistic Annotation Framework (Ide & Romary, 2004; ISO 24612:2012) draws a distinction
between the concepts of annotation and representation. The term ‘annotation’ refers to the linguistic
information that is added to segments of language data, independent of the format in which the infor-
mation is represented, while the term ‘representation’ refers to the format in which an annotation is
rendered, independent of its content. According to the Linguistic Annotation Framework, annotations
are the proper level of standardisation, rather than representations.

This paper proposes an approach to the definition of annotation languages which meets both the
requirement of semantic adequacy and the requirements of the Linguistic Annotation Framework. Ac-
cording to this approach, the definition of an annotation language has a syntactic component that spec-
ifies, besides a class of representation structures also a class of more abstract annotation structures.
These two parts are called the concrete and abstract syntax of the language definition, respectively,
and their distinction is a reflection of the distinction between annotations and representations. More-
over, a semantics is defined for the abstract rather than for the concrete syntax, and is inherited by the
representations defined by a concrete syntax. The approach distinguishes four stages in the process of
designing a semantic annotation language: (1) conceptual analysis of the information to be captured by
annotations; (2) specification of an abstract syntax defining the basic concepts in annotations and their
possible combinations; (3) definition of a semantics for the annotation structures defined by the abstract
syntax; and (4) specification of a concrete syntax for representing the annotation structures defined by
the abstract syntax. Because of these stages, the approach is called CASCADES (Conceptual analysis,
Abstract syntax, Semantics, and Concrete syntax for Annotation DESign).

This approach was developed during the ISO project Semantic annotation framework, Part 1: Time
and events (ISO 24617-1, 2012), and incorporates ideas that have evolved over the years in annotation
research, such as the specification of a metamodel in an early stage of ISO standardisation projects (see
e.g. Bunt & Romary, 2004); the distinction between annotations and representations in the Linguistic
Annotation Framework (Ide & Romary, 2004; 2006); the use of standoff rather than embedded annota-
tion; and the definition of general pivot formats like the graphic format GrAF (Ide & Suderman, 2007).
New in the CASCADES approach is that these ideas are incorporated in a structured design process
with outlines of procedures for moving from one stage of design to another (in either direction), in com-
bination with the new ideas of an abstract syntax for annotations; a semantics for an abstract syntax, and
the notion of ‘ideal representation formats’ for a given abstract syntax.

The CASCADES methodology has three kinds of applications, which are discussed in this paper.
First, the methodology was originally developed to support the definition of interoperable semantic an-
notations, notably as targeted in ISO annotation standards. Besides its use in the ISO project defining
the standard ISO 24617-1 for time and events, including a metamodel and the annotation language
ISO-TimeML (see Pustejovsky et al., 2010), it has been used from the start in ISO project Semantic

1



annotation framework, Part 2: Dialogue acts, beginning with the stage of conceptual analysis and end-
ing with the definition of an XML-based representation format for dialogue annotation in the dialogue
act markup language DiAML (see Bunt et al., 2010; 2012).

A second kind of application is to design semantic annotations not starting with a conceptual analy-
sis, but starting from an existing representation format, such as that of PropBank (Palmer et al., 2005) or
that of the Penn Discourse Treebank (Prasad et al., 2008), and to use the CASCADES method in reverse
direction to ‘reverse-engineer’ an abstract syntax underlying the representation format. If the aim is to
develop an ISO standard for a certain domain of semantic annotation, then the requirement of semantic
adequacy implies that a semantics should also be defined, for which the CASCADES procedure can be
helpful. The methodology is currently being used for this kind of application in developing ISO standard
24617-4 for the annotation of semantic roles (see Bonial et al., 2011a; 2011b), and ISO 24617-8 for the
annotation of discourse relations (see Bunt, Prasad & Joshi, 2012); the latter is discussed in Section 4.1.

A third kind of application is to use the methodology, in particular its feedback cycles, described in
Section 3, for detecting and repairing deficiencies in existing annotation schemes and representations.
Ide et al. (2011) already noted that the ‘reverse-engineering’ of an abstract syntax for the representations
of the Penn Discourse Treebank lead to considerable improvements in the representations; adding a
semantics to the abstract syntax leads to further improvements and ensures that the requirement of
semantic adequacy is satisfied; (see Section 4.1). Two other cases of this kind of application are the
representation of repeated events in ISO-TimeML and the annotation of dependency relations between
dialogue acts in DiAML; these are discussed in Section 4.2.

Section 2 first describes and illustrates the four CASCADES stages. Section 3 outlines procedures
for defining an abstract syntax from a given conceptual analysis, for defining an XML-based represen-
tation format given the specification of an abstract syntax, and for defining a DRT-based semantics for a
given abstract syntax. After the discussion of applications in Section 4, the paper ends with a summary
of the innovations and applications of the CASCADES method in Section 5.

2 Four stages in the design of semantic annotations

An annotation language serves to represent the information that annotations add to primary data. When
designing an annotation language, the first question to consider is what information we want to be able
to represent. The design of an annotation language therefore starts at a conceptual level, independent of
representation formats.

2.1 Stage 1: Conceptual analysis

A first phase of conceptual analysis serves to determine the conceptual content of the targeted annota-
tions, identifying the basic concepts that form the building blocks of the annotations, and establishing
the ways in which these concepts are interrelated. This early stage of designing an annotation language
results in the establishment of what in ISO projects is called a metamodel, a diagrammatic representa-
tion of the kinds of elements that may occur in annotations and how they are related. Figure 1 shows an
example of a metamodel for dialogue act annotation.

This metamodel says that a dialogue consists of at least two functional segments, as indicated by
‘2..N’ at the head of the arrow relating the ‘dialogue’ concept and the ‘functional segment’ concept. A
functional segment is related to one or more dialogue acts (more than one in the case of a multifunctional
segment). A dialogue act has one sender, one or more addressees, and possibly other participants. It has
a semantic content belonging to a certain content dimension and a communicative function, which may
have one or more qualifiers (Petukhova & Bunt, 2010). It may also be related to other dialogue acts and
to other functional segments through functional dependence relations, rhetorical relations, and feedback
dependence relations.

Except for the dialogue concept, which is a kind of meta-concept for dialogue analysis, each of the
boxes in the metamodel represents a category of concepts; a labelled arrow between boxes represents a
single relational concept rather than a category of relations.

2



dialogue

?2..N
functional
segment

?1..N

participant 1..1 sender
�

1..N addressee�

other0..N
�

content
dimension

communicative
function -0..N qualifier

1..1

�
�
�	

@
@
@R 1..1

dialogue act

functional dep. rel.
0..N?

rhetorical
relationrelatum0..N

�

�
focus-act0..N

�0..1

?0..N
feedback dep rel.

-feedback dep rel.
0..N

Figure 1: ISO 24617-2 metamodel for dialogue act annotation.

2.2 Stage 2: Specification of an abstract syntax

A second stage in defining a semantic annotation language is the establishment of a formal specification
of the concepts in the conceptual analysis, a so-called ‘conceptual inventory’, and of the well-formed
combinations of concepts of the conceptual inventory. These specifications form the so-called abstract
syntax of the annotation language.

The abstract syntax provides a format-independent level of specifying the possible structures of
annotations as set-theoretic constructs, called annotation structures.An annotation structure is a set of
two kinds of elements, entity structures and link structures. An entity structure contains information
about a segment of the primary data (typically a stretch of text, speech, or nonverbal or multimodal
communicative behaviour); a link structure contains information about the way in which two or more
segments of primary data are semantically related. An entity structure is formally a pair

(1) ε = 〈m,s〉

consisting of a markable m, identifying a segment of primary data, and the semantic information s asso-
ciated with this segment. The structure of the component s depends on the kind of semantic information
to be annotated; see e.g. (9) - (11) for the structuring of this component in the case of dialogue act
annotation.

A link structure is a triple

(2) L = 〈ε,E,ρ〉

consisting of an entity structure ε , a set E of entity structures that ε is related to, and a relational
component ρ which is either (a) a pair 〈R,q〉 formed by a relation R and a (possibly empty) set q of
qualifiers that further specify how ε and E are related by R; or else (b) a triple 〈m,R,q〉 with R and q as
before, and m a markable which identifies a segment of primary data that expresses the relation R.

For instance, in semantic role annotation a link structure is a triple 〈ε1,{ε2},〈Ri,〈〉〉〉, where ε1
is an entity structure that contains information about an event, ε2 is an entity structure that contains
information about a participant in the event, and Ri is the semantic role of the participant in the event.

3



2.3 Stage 3: Semantics definition

While in the second stage nothing is said about the representation of annotation structures, it is clear
what the annotation structures are intended to mean. The specification of what an annotation structure
means is the specification of a semantics for these structures. This is the crucial stage 3 (see Fig. 3)
of the method. Any representation of an annotation structure inherits its semantics from the annotation
structure that it represents.

Defining the semantics of annotation representations indirectly, via the underlying annotation struc-
tures, has the important advantage that any format for representing annotation structures inherits the
same semantics, which is highly beneficial for improving the interoperability of semantic annotations.

In Section 2.2.4 we will see how a formal semantics can be systematically constructed for a given
abstract syntax.

2.4 Stage 4: Specification of a concrete syntax

The fourth and final stage of the CASCADES method is the definition of a reference format for repre-
senting the annotation structures defined by the abstract syntax, for example as a linearisation in XML.

A representation format for annotation structures should ideally give an exact expression of the
information in annotation structures. A concrete syntax, defining a representation format for a given
abstract syntax, is said to be ideal if it has the following properties:

(3) • Completeness: every annotation structure defined by the abstract syntax can be represented
by an expression defined by the concrete syntax ;

• Unambiguity: every representation defined by the concrete syntax is the rendering of one
and only one annotation structure defined by the abstract syntax.

Due to its completeness, every ideal concrete syntax RFi defines a function Fi from annotation structures
to RFi-representations, and due to its ‘unambiguity’ there is also an inverse function F−1

i from RFi-
representations to annotation structures. Since this holds for any ideal concrete syntax, it follows that
any two ideal representation formats are semantically equivalent.

If Ia is the interpretation function defining the semantics of the abstract syntax, then the meaning
µ(r) of a representation r in some ideal format RFi is defined by (4).

(4) µ(r) =D Ia(F−1
i (r))

Figure 2 visualises the relations between abstract syntax, semantics, and multiple ideal concrete
syntactic specifications. It is immediately clear that a given representation r defined by concrete syntax
RFi can be converted into a semantically equivalent representation r′ in the representation format FR j

by first applying the function F−1
i in order to determine the annotation structure which it encodes, and

applying to that annotation structure the function Fj which provides an encoding in the format RF j.1

In other words, for any two ideal representation formats RFi and RF j there is a meaning-preserving
conversion Ci j from RFi-representations to RF j-representations defined by function composition:

(5) Ci j(r) =D Fj ◦ F−1
i

This mapping is meaning-preserving due to the fact that the meaning of a representation is the meaning
of the annotation structure that it encodes.

In sum, the CASCADES approach to designing annotation languages consists of the following
stages:

1The conditions (3) defining an ideal concrete syntax require every annotation structure to have at least one representation,
but do not rule out the possibility that an annotation structure has more than one representation. The encoding functions, like
Fj , may therefore assign multiple RF j-representations to a given annotation structure.

4



Abstract Syntax

?

�
��

�
��

�
��

�
��
�*

-�

HH
HHH

HHH
HHH

HHj

@
@
@
@
@
@
@
@
@
@
@
@@R

Semantics

Ideal Concrete Syntax 1�
���

���
���

����
Ideal Concrete Syntax i

?

6
Ci j

C ji

Ideal Concrete Syntax jHH
H
HH

H
HH

H
HH

HHY

Ideal Concrete Syntax n
@

@
@
@

@
@
@

@
@
@

@
@@I

Ia

F−1
1

F1

F−1
i Fi

Fj

Fn

F−1
j

F−1
n

Figure 2: Relations among components of annotation language definition and ideal representation for-
mats.

(6) 1: Conceptual Analysis: Formulate a conceptual view of the information to be captured in
annotations. Such a formulation is initially informal, in the form of a formulated in natural
language. This analysis is conveniently cast in the form of a ‘metamodel’, i.e. a listing of the
categories of entities and relations that play a role in the annotation, visualised in a diagram.

2: Abstract Syntax: Articulate the conceptual view in the form of an inventory of basic concepts
(a ‘conceptual inventory’), and a formal specification of the possible ways of combining
these elements in set-theoretical structures, called annotation structures. This specification
is called an ‘abstract syntax’.

3: Semantics: Provide a formal semantics for the structures defined by the abstract syntax.
Every concrete syntax which defines a rendering of the abstract annotation structures inherits
the semantics of the abstract syntax.

4: Concrete Syntax: Specify a representation format for the structures defined by the abstract
syntax; in particular, specify a representation format that has the properties of being com-
plete and unambiguous - an ideal representation format.

3 Steps and cycles in the design process

The CASCADES model derives its usefulness in the first place from enabling a systematic design pro-
cess, in which due attention is given to the conceptual and semantic choices on which more superficial
decisions such as the choice of particular XML attributes and values should be based. Second, the model
provides methodological support by means of procedures for how to make the step from one level of
decision-making to the next, in particular for (1) how to construct an abstract syntax given a metamodel
(step 1 in Fig. 3); (2) how to define a formal semantics for a given abstract syntax (step 2); and (3) how
to map an abstract syntax to an XML-based concrete syntax. These procedures are outlined in the rest
of this section.

While the outlined procedures for making these design steps is potentially of great help for produc-
ing systematic and well-founded designs, it would be an illusion to think that fully satisfactory designs
can be developed through a simple linear sequence of steps from conceptual analysis to the definition
of a representation format. Realistic design processes require feedback loops. Figure 3 shows four such
loops. First, the specification of an abstract syntax is a way to formalise the conceptual analysis in the

5



i CONCEPTUAL
ANALYSIS

1
- ABSTRACT SYNTAX

specification

2
-

3

-

6

�

SEMANTICS
definition

5
�

CONCRETE SYNTAX
specification

4

�

Figure 3: The CASCADES model.

initial stage of the process. This formalisation may very well clarify or alter some aspects of the initial
analysis; CASCADES step 6 is for feeding the results of the formalisation back into the conceptual
analysis. Second, the specification of a concrete syntax, defining a specific representation format, may
by virtue of its concreteness motivate adaptations in the underlying abstract syntax; step 4 is for this
feedback in the design process. Third, since the definition of a semantics for an abstract syntax is the
best way to find inadequacies in the latter, this may be fed back into the abstract syntax specification in
step 5. And finally, the latter two feedback loops may well be combined: if the feedback in step 4 has
resulted in a revised specification of the abstract syntax, this will require reconsidering the semantics
(step 2), which may be fed back again into the abstract syntax specification (step 5). This cycle 〈2;5〉
may be repeated until the abstract syntax and its semantics are satisfactory and stable, at which point
the annotation language is assumed to meet the requirement of semantic adequacy. The concrete syn-
tax should now be adapted to this abstract syntax (step 3) - which in turn may have consequences that
should be fed back (step 4). In fact, the ‘outer cycle’ 〈3;4〉 does not make much sense to perform if not
combined with the ‘inner cycle’ 〈2;5〉, resulting together in the feedback loop (7):

(7) 〈4;〈2;5〉∗;3〉∗

This feedback loop is particularly important not only for systematically developing a consistent design
that starts from the initial stage of conceptual analysis, but also for being applied to a pre-existing
representation format, in order to detect semantic deficiencies, or in order to develop an annotation
language that meets the requirements of the ISO Linguistic Annotation Framework and the requirement
of semantic adequacy; the latter applications will be discussed in Section 4.

3.1 From metamodel to abstract syntax

The definition of an abstract syntax consists of two parts: (1) the conceptual inventory, which speci-
fies the basic concepts that may be used in annotations, and (2) the specification of the well-formed
combinations of these elements as set-theoretical structures, the annotation structures. An annotation
structure, as mentioned in Section 2.2, is of a set of (one or more) entity structures and (zero or more)
link structures, as defined in (1) and (2), respectively.

Given a metamodel, the definition of an abstract syntax may follow the procedure outlined in (8):

(8) Definition of abstract syntax from a given metamodel (CASCADES step 1):

6



1. Conceptual inventory:
Among the categories of concepts represented in the metamodel, identify those concepts that
are basic and those that are composite, i.e., that are defined as combinations of other concepts
occurring in the metamodel; the listing of the basic concepts constitutes the conceptual
inventory.

2. Annotation structures:
• For each category of composite concepts in the metamodel define an entity structure as

a pair 〈m,s〉 consisting of (a) a markable m, and (b) the elements that characterise the
instance s of the concept that is linked to that markable;
• For each relational category define a link structure as a triple 〈ε,E,ρ〉 consisting of (a)

the entity structure ε whose semantic relation to other entity structures is annotated; (b)
the set E of these other entity structures; and (c) the semantic relation ρ (which may be
a structured object, e.g. a pair 〈m,r〉 consisting of a markable m and a relation r).

Applied to the metamodel of Fig. 1 (which was inspired by the concept definitions of the DIT++

annotation schema (Bunt, 2009b) and indirectly by the DAMSL scheme (Allen & Core, 1997)), for
defining a conceptual inventory we may observe that seven of the eight boxes in the metamodel cor-
respond to categories of concepts to be used in annotations; the exception is the‘dialogue’ box, which
represents a meta-concept, which is the source of the functional segments and contains the relevant
metadata (not shown in Fig. 1). The concepts in six of these seven categories are basic; the only com-
posite concept is the dialogue act. Of the six relations that occur in the metamodel, rhetorical relations
is the only one which may have different values (like Cause, Motivate, or Exemplify) and therefore
corresponds to a category of concepts; the labelled arrows represent single basic concepts.

The conceptual inventory of an abstract syntax lists the basic concepts in the metamodel; for DiAML
the seven categories corresponding to boxes in Fig. 1 except the dialogue act box constitute categories of
basic concepts; a dialogue act is a composite concept, composed of a sender, (an) addressee(s), possibly
other participants, a content dimension, a communicative function, and possibly one or more qualifiers.
A composite concept does not correspond to an item in the conceptual inventory, but to a structure built
with objects from the conceptual inventory. The DiAML conceptual inventory thus lists six sets of basic
concepts: (1) functional segments, (2) dialogue participants, (3) content dimensions, (4) communicative
functions, (5) qualifiers, and (6) rhetorical relations, plus the relational concepts represented by labeled
arrows in Fig. 1.

An entity structure in DiAML is one of the following nested pairs:

(9) a. ε = 〈m,〈α,∆〉〉

b. ε = 〈m,〈r,〈〉〉〉

made up of a markable m that identifies a functional segment (case 9a) or a text segment that expresses a
rhetorical relation (case 9b); a ‘dialogue act structure’ α , which characterises a single dialogue act with-
out the relations that it might have to other dialogue units; a ‘dependence structure’ ∆, which describes
the semantic dependence relations between the dialogue act α and other dialogue units; and a rhetorical
relation r.

A ‘dialogue act structure’ is a sixtuple

(10) α = 〈S,A,H,d, f ,q〉

where S is the sender of the dialogue act; A is a non-empty set of addressees; H is a (possibly empty)
set of other dialogue participants (such as overhearers or side-participants; see Clark (1996); d is a
dimension; f is a communicative function; and q is a (possibly empty) list of qualifiers. In order to avoid
details which are irrelevant for this paper, we will only consider cases where the set H of participants
who are neither speakers nor addressees is empty, and where there is only a single addressee - we will
use A to indicate this addressee (rather than the set consisting of this addressee).

7



A ‘dependence structure’ is a pair consisting of a finite (possibly empty) set E of entity structures,
whose members α has a dependence relation with, and Rdep specifying the dependence relation (func-
tional or feedback - see below, Section 4.2):

(11) ∆ = 〈E,Rdep〉; E = {ε1,ε2, ...,εn}, n≥ 0; Rdep = R f unc or R f bck

Link structures in DiAML are used to capture rhetorical relations between dialogue acts, for which
qualifying information is not anticipated, hence the component q that link structures in general have
(see (2)) is empty. Such relations may be expressed by discourse connectives but may also be implicit,
as the metamodel in Fig. 1 indicates by a labelled arrow from rhetorical relations to functional segments
with the specification ‘0..N’ at the head. A link structure in DiAML is therefore one of the following
two triples:

(12)
a. L = 〈ε,E,〈r,〈〉〉
b. L = 〈ε,E,〈m,〈r,〈〉〉〉

consisting of an entity structure ε , a finite set E of one or more entity structures, and a rhetorical relation
r, possible expressed in the text by a markable m, which relates the dialogue act in α to those in E.
(Note that in case 12b the link structure contains a relational entity structure of the type 9b.)

Since DiAML has just one category of composite concept, the dialogue act, and one type of re-
lational concept, the rhetorical relation, the abstract syntax constructed in this way defines just one
category of entity structure, which associates a dialogue act with a functional segment, and one type of
link structure, which relates dialogue acts by a rhetorical relation.

It may be noted that the entity structures and link structures listed in (9) + (10 + (11) and (12) are
not the only structures of the abstract syntax; additionally, several auxiliary structures are used, namely:

(13)

- dialogue act structures (see (10));
- dependence structures (see (11));
- sets of entity structures (see (11) and (12));
- relation structures (in (12b)).

In (15a) we see an example of an annotation structure, which applies to the dialogue fragment in
(14), segmented into functional segments as shown in the lower part. Since there are no rhetorical
relations in this fragment, the annotation structure consists just of three entity structures, one for each
of the three dialogue acts expressed in the functional segments fs1, fs2 and fs3 (which all happen not to
be multifunctional, and hence correspond to a single dialogue act). The column at the right in the lower
part of (14) indicates the content dimensions in which the functional segments are relevant.

(14)

C: Do you know what time the next train to Utrecht leaves?
S: The next train to Utrecht leaves I think at 8:32.
fs1 = Do you know what time the next train to Utrecht leaves? Task
fs2 = The next train to Utrecht Auto-Feedback
fs3 = The next train to Utrecht leaves I think at 8:32. Task

(15)

AS = {ε1,ε2,ε3}, with
ε1 = 〈 f s1,〈P1,{P2},φ ,d1,F4,φ〉,φ ,−〉
ε2 = 〈 f s2,〈P2,{P1},φ ,d2,F29,φ〉,{ f s1}, feedback〉
ε3 = 〈 f s3,〈P2,{P1},φ ,d1,F7,{c2}〉,{ε1}, functional〉

The entity structure ε2 characterises the feedback act expressed in segment fs2, including the functional
segment s1 (of the entity structure ε1) that it provides feedback about. The entity structure ε3, which
characterises the answer expressed in segment fs3, has the communicative function component F7 (‘An-
swer’) and a qualifier component {c2} (‘uncertain’); moreover, it includes the identifier ε1 of the entity
structure describing the question that the answer is functionally dependent on.

8



3.2 From abstract to concrete syntax

An ideal representation format in XML can be constructed systematically from a given abstract syntax
using the procedure outlined in (16), which exploits the fact that entity structures are n-tuples of elements
taken from the conceptual inventory, and link structures are made up of such entity structures plus an
element from a relational category.

(16) Definition of concrete syntax given an abstract syntax (CASCADES step 3):

1. For each element of the conceptual vocabulary define an XML name;

2. For each type of entity structure 〈m,s〉 define an XML element with the following attributes
and values:

• the special attribute @xml:id, whose value is an identifier of the entity structure rep-
resentation;
• the special attribute @target, whose value represents the markable m;
• attributes whose values represent the components of si, depending on the structure of s;

if si is a basic concept then it is represented by its name.

3. For each type of link structure 〈ε,E,ρ〉 define an XML element with three attributes, two
which have values that refer to the representations of the entity structures that are rhetorically
linked, the value of the third denoting the relation between them.

4. For each type of auxiliary structure specify an XML representation. See the case of DiAML
considered below.

In the case of DiAML, of which the definition of an abstract syntax was considered above, the
auxiliary structures listed in (13) are used, which can be represented following the concrete syntax rules
in (17):

(17) 1. A dialogue act structure α = 〈S,A,H,d, f ,q〉 is represented by a dialogueAct element
which has six attributes whose values represent the six components of the dialogue act struc-
ture;

2. A dependence structure ∆ = 〈E,Rdep〉 occurring in an entity structure ε = 〈m,〈α, 〈E,Rdep〉〉〉
is not represented at all if E is empty; if E is not empty, then the dependence structure is
represented by a sequence of two attributes in the representation of the dialogue act structure
α , one having as its value the XML constant naming the dependence relation and the other
representing the set E. If E is a singleton {ε1} then the latter value is just the representation
of ε1. (See the next item for the case that E = {ε1,ε2, ...,εn} with n≥ 2.)

3. A set of entities {ε1,ε2, ...,εn}with n≥ 2 is represented by an XML element (e.g. ‘daGroup’),
which has an attribute whose values identify the members of E.

4. A relation structure of the form 〈R,〈〉〉 occurring in a link structure L = 〈ε,E,〈R,〈〉〉, is
represented by assigning the XML name of the relation R as value to the attribute in the link
structure representation for representing the relation between the entity structure ε and those
in E. For representational convenience, the XML element for representing link structures is
given an additional optional attribute @target, so that this element can be used also for
the case that the relation structure has the form 〈m,R,〈〉〉〉.

Applying the procedure outlined in (16) together with (17) to the abstract syntax of DiAML leads to
an ideal concrete XML-based syntax which defines the representation (18) for the example (14) - (15).

9



(18)

<diaml xmlns:"http://www.iso.org/diaml/">
<dialogueAct xml:id="da1" target="#fs1"

sender="#p1" addressee="#p2" dimension="task"
communicativeFunction="setQuestion"
conditionality="conditional"/>

<dialogueAct xml:id="da2" target="#fs2"
sender="#p2" addressee="#p1"
dimension="autoFeedback"
communicativeFunction="inform"
feedbackDependence="fs1"/>

<dialogueAct xml:id="da3" target="#fs3"
sender="#p2" addressee="#p1" dimension="task"
communicativeFunction="answer"
certainty="uncertain" functionalDependence="#da1"/>

</diaml>

Note that each dialogueAct element in this representation corresponds to an entity structure in
the abstract annotation structure; the value of the @target attribute identifies the functional segment
that expresses the dialogue act; the value of the @xml:id attribute provides an identifier for the dialogue
act structure as a whole, and the other attributes and values represent the basic concepts that the dialogue
acts are composed of.

3.3 From abstract syntax to semantics

The construction of a formal semantics for a given abstract syntax is in general not straightforward,
and depends on the form of semantics that is aimed for. If the annotations supported by the abstract
syntax concern descriptive, propositional information, as is for instance the case with information about
time and events, about semantic roles, about coreference, about spatial information, and about discourse
relations, then a convenient form of semantics can be based on Discourse Representation Theory (DRT),
as argued in Bunt (2012a). For the annotation of dialogue act information this is different, since an
action-based semantics is more appropriate in this case (see Section 4.2.2).

For constructing a DRT-based semantics, given an abstract syntax, the CASCADES method pro-
vides the procedure outlined here, which is based on work reported in Bunt (2009a; 2011a; 2012a).

(19) Definition of a DRT-based semantics for a given abstract syntax (CASCADES step 2):

1. An entity structure 〈m,s〉 is interpreted as a DRS which:

• introduces a discourse marker paired with a name of the markable m;
• contains for each component si of s a condition pi(x,ai), where ai is the interpretation

of the component si, pi is a predicate that indicates the role of ai, and x is the newly
introduced discourse marker (examples below);

2. A link structure 〈〈m1,s1〉,E,ρ〉 is interpreted as a DRS which:

• introduces a discourse marker x1, paired with a name of the markable m1;
• if E is a singleton {ε2}, with ε2 = 〈m2,s2〉, introduces a discourse marker x2, paired

with a name of the markable m2;
else if E = {〈m2,s2〉,〈m3,s3〉, ...,〈mk,sk〉}, introduces a discourse marker X1, paired
with a markable M1 that identifies the (possibly discontinuous) stretch of primary data
which is the merge of the stretches identified by the markables m2,m3, ...,mk;
• introduces a condition of the form R′j(x1,z), where R′j is the interpretation of the relation

in component ρ of the link structure; z = x2 if E = {ε2}; else z = X1.

3. For each type of auxiliary structure that may occur within the s component of an entity
structure 〈m,s〉 or within the ρ component of a link structure the DRS interpretation is
specified.

10



Note the introduction of discourse markers paired with markables; this is to preserve the information
that is contained in entity structures about the markable that certain semantic information is associated
with. Once the interpretations of the individual entity structures and link structures, as represented by
DRSs, have been combined to interpret the annotation structure as a whole, these markables are no
longer needed, and the resulting DRS reduces to a classical one with ordinary, single discourse markers.

Illustrating this step in defining semantic annotations, Bunt (2012a) describes a semantics con-
structed for ISO-TimeML. For example, for annotating the temporal information in the sentence (20)
the ISO-TimeML abstract syntax introduces an entity structure ε1 for the call event and an entity struc-
ture ε2 for the time point midnight, while the temporal anchoring relation between the event and the time
point gives rise to a link structure L1. The entity structure for an event is an n-tuple, where 1 ≤ n ≤ 6,
depending on the types of information available about the event. In this example only an event type and
a tense are known, so the event structure is a pair 〈event type, tense〉.

(20) John called Mary at midnight

The semantics maps the entity and link structures to mini-DRSs as follows:

(21) ε1 ;

〈m2,e1〉

EVTYPE(e1,call)
EVPERIOD(e1, past)

ε2 ;

〈m4, t1〉

CLOCKTIME(t1,2400)

L1 ;

〈m2,e1〉, 〈m3, t2〉

EVENT-TIME(e1, t2)

Merging these interpretations of the entity and link structures results in the following interpretation of
the ISO-TimeML annotation:

(22)

〈m2,e1〉,〈m4, t1〉

EVTYPE(e1,call)
EVPERIOD(e1, past)
CLOCKTIME(t1,2400)
EVENT-TIME(e1, t1)

This says that a token of the call event type e1 occurred in the past, at the time point t1, which was at
24:00 hours.

An attractive feature of this kind of annotation semantics is that it can be applied equally to anno-
tation structures capturing different kinds of information, allowing easy combination. For example, the
annotation of semantic roles can be interpreted in the same way and integrated with the temporal infor-
mation. In the case of example (21), the abstract syntax of the annotation of the semantic roles of John
and Mary will introduce three entity structures, one (ε3) for John, one (ε5) for Mary, and one (ε4) for
the call event, and two link structures, one (L2) for John playing the Agent role in the call event and one
(L3) for Mary playing the Theme role. The semantics of these structures takes the form of the following
DRSs:

(23) ε3 ;

〈m1,x1〉

PERSON(x1, john)

11



ε4 ;

〈m2,e2〉

EVTYPE(e2,call)
EVPERIOD(e2, past)

ε4 ;

〈m3,x2〉

PERSON(x2,mary)

L2 ;

〈m1,x1〉, 〈m2,e1〉

AGENT(x1,e1)

L3 ;

〈m3,x2〉, 〈m2,e1〉

THEME(x2,e1)

Merging the interpretations of the three entity structures and the two link structures gives us the inter-
pretation of the semantic role information:

(24)

〈m1,x1〉, 〈m2,e2〉, 〈m3,x2〉

PERSON(x1, john)
EVTYPE(e2,call)
EVPERIOD(e2, past)
AGENT(x1,e2)
PERSON(x2,mary)
THEME(x2,e2)

This interpretation indeed combines smoothly with that of the temporal information as represented in
(22). Taking into account that the markables paired with discourse markers can be eliminated once the
interpretations of all entity structures and link structures have been merged, we obtain through the merge
of (22) and (24) the interpretation of both the temporal and semantic roles annotations:

(25)

x1,e1,x2, t1

PERSON(x1, john)
EVTYPE(e1,call)
EVPERIOD(e1, past)
AGENT(x1,e1)
PERSON(x2,mary)
THEME(x2,e1)
CLOCKTIME(t1,2400)
EVENT-TIME(e1, t1)

The possibility to combine the semantics of different annotations is helpful for ensuring that anno-
tation schemes concerned with different kinds of information are semantically compatible and ‘interop-
erable’.

4 Applications

In describing the CASCADES method in the previous section, in particular how the method helps to
move from one design stage to another, we have in passing illustrated the use of the method for designing

12



semantic annotations starting with a conceptual analysis. In practice, the design of a language for
semantic annotation more often starts from an existing representational format or annotation practice.
If that is to be the basis for developing an ISO standard, then an abstract syntax with a semantics must
be constructed that fits the representations, in view of the requirements of the Linguistic Annotation
Framework and the requirement of semantic adequacy, mentioned in Section 1. Starting from an existing
practice, the CASCADES method can be used by following the double cycle 〈4;〈2;5〉∗;3〉 (Fig. 3),
starting with the reconstruction of an abstract syntax from the concrete syntax in step 4. (See also
Section 3 where this feedback loop was introduced in (7)). The CASCADES method has been used in
this ‘reverse engineering’ mode in the definition of an abstract syntax for the annotations in the Penn
Discourse Treebank (PDTB) as a first step in the development of an ISO standard for the annotation of
discourse relations (see Bunt, Prasad & Joshi, 2012).

Ide et al. (2011) have ‘reverse-engineered’ an abstract syntax for the PDTB representation format
with the aim of designing a GrAF representation (Ide & Suderman, 2001) for these annotations, and
have shown that, even without specifying a semantics for this abstract syntax, as would happen in the
CASCADES feedback cycle 〈4;〈2;5〉∗;3〉, this leads to improvements in the PDTB representations.
They remark that “The exercise of creating an abstract syntax for the PDTB scheme and rendering it
in a graphic form shows the structure of the annotations more clearly. The concrete syntax is much
more readable than the original format, and therefore errors and inconsistencies may be more readily
identified.” Similarly, in designing a GrAF-based representation for the annotation of semantic roles in
PropBank (Palmer et al., 2005), it was noted note that the existing annotation scheme is ambiguous
as to the relations among the parts of an annotation; Ide & Bunt (2010), applying the combined ideas
of abstract syntax and GrAF to a variety of existing annotation schemes, observe that “The original
PropBank encoding is close to an ideal concrete syntax, as it can be generated from the abstract syntax.
However, the round trip back to the abstract syntax is not possible, because it is necessary to do some
interpretation of associations among bits of annotations in order to construct the abstract syntax”, and
Ide & Suderman (2007) conclude that this is a demonstration of an “all-too-pervasive feature of many
annotation schemes: reliance on human interpretation”.

Existing annotation schemes typically do not come with an annotation language for which a formal
semantics is defined, and the distinctions made in the representations are therefore not always semanti-
cally well-founded, or the representations fail to make certain distinctions which should be made from
a semantic point of view. Using the CASCADES method in reverse-engineering mode, in particular
applying the double cycle 〈4;〈2;5〉∗;3〉∗, can help to detect representational problems by making the
underlying semantic issues explicit. Section 4.2 will illustrate this for two cases in the design of ISO
standards for semantic annotation.

4.1 From the PDTB to ISO 24617-8

The annotation schema underlying the (PDTB, see Prasad et al., 2008) supports the annotation of the
following aspects of semantic relations in discourse:

1. the discourse relations that define a semantic connection between two stretches of text (only bi-
nary relations are assumed);

2. the two stretches of text that describe the arguments of a discourse relation;

3. more extended stretches of text that may be useful for annotators for identifying or interpreting
the arguments of a discourse relation, so-called ‘supplemental arguments’;

4. for two adjacent sentences which are not related by a discourse relation, if they form a coherent
text fragment due to coreference relations then they are annotated as having the EntityRel
relation; else they are annotated as having the relation NoRel;

5. for a discourse relation which is explicitly expressed in the text, whether the expression uses a
discourse connective or is some other kind of expression;

• if it is realised by an expression that uses a discourse connective, then:

13



– which discourse connective is the lexical head of the expression;
– which sense of the discourse connective is used

• if the discourse relation is not expressed in the text, then which English discourse connective
could be inserted to express it, and in which of its senses;

6. for discourse relations and their arguments the source that they are attributed to (such as the author
of the text), with some further properties of the attribution (see below).

Some of these elements are illustrated in the following example, which shows the PDTB annotation of
an implicit discourse relation that is not expressed in the text but which could have been realised by the
connective besides. The relation is attributed to the source "ot" (which stands for other, as opposed to
the author of the text or some arbitrary agent indicated in the text through a non-specific reference) and
has the type "comm" (for ‘communication’, i.e. explicitly asserted, rather than e.g. an expressed belief);
this attribution is expressed in the text segment with span "726...752" in the primary data (raw text
files of the Wall Street Journal), located in the Penn Treebank at the Gorn address (Gorn, 1965) that
refers to node sets in the treebank trees. The discourse relation is the comparative sense of the connective
besides. Senses of connectives in the PDTB Form a 3-tier hierarchy, of which the top layer contains
the four classes Contingency, Temporal, Expansion, and Comparison; within each of
these classes various subclasses are defined, and for most subclasses certain elements are defined. For
example, Expectation is an element of the Concession subclass of the Comparison class. The
two arguments of the discourse relation are identified by their text spans and treebank addresses, and in
this example are attributed to an ‘inherited’ source (src="Inh").

(26)

<implicitRelation
src="ot" type="Comm">
<attr span="726...752"
gorn="4, 0; 4, 1, 0; 4, 1, 1; 4, 1, 2; 4, 2">

<ic sClass1="Expansion.Conjunction"
besides</ic>

<arg1 span="778...874" gorn="5" src="Inh"/ >
<arg2 span="876...916" gorn="6" src="Inh"/ >

</implicitRelation>

As a first step in the direction of defining an ISO standard for discourse relation annotation, the
cycle 〈4;〈2;5〉∗;3〉 can be applied to construct an abstract syntax with a semantics, and an ideal concrete
syntax for that abstract syntax. For performing the first step in this cycle, step 4, a procedure is required
which does roughly the converse of step 3, so is it possible to invert the procedure (16) outlined for that
step?

It may be observed first that some of the things that are marked up in the PDTB do not clearly con-
stitute semantic information, such as whether a discourse relation is realised by a discourse connective
or by a different kind of expression. Not being semantic in nature, this distinction cannot correspond
to a distinction in the underlying abstract syntax, nor to a distinction in the metamodel. The distinction
may be made in the concrete representations for other reasons, such as being helpful for annotators, or
being of interest for other purposes than semantic interpretation, but for the reconstruction of an abstract
syntax they can be left out of consideration. The following observations of this kind can be made about
the PDTB annotations:

(27) 1. The senses in the hierarchy of discourse connective senses form in fact the set of discourse
relations that are distinguished. Elements at the highest level of the hierarchy are coarse-
grained discourse relations; those at the level below are finer-grained discourse relations;
and those at the lowest level are the most fine-grained ones. When a discourse relation is
annotated which is not one of the top four coarse-grained relations, then there is no need
to explicitly annotate the higher levels, such as Expansion.Conjunction in (26); just
Conjunction is sufficient.

14



2. The PDTB relations NoRel and EntityRel are not truly semantic discourse relations;

3. It is redundant to annotate whether a discourse relation is explicitly realised in the source
text (this follows from whether the discourse relation is associated with a markable), and if it
is, whether the realisation uses a discourse connective or some other form, like an adverbial
phrase (the latter case represented in PDTB annotations by the altLex tag);

4. If a discourse relation is not explicitly realised, then it is redundant to specify a discourse
connective that could be inserted; the specification of the sense of a connective that could be
inserted is sufficient.

5. The ‘supplemental arguments’ of the PDTB annotation scheme are not clearly semantic in
nature, and may from a strictly semantic point of view be considered to be redundant.

These observations can be taken into account2 in two ways. One way is to change the XML rep-
resentations, for example deleting inserted discourse connectives in the case of implicit discourse re-
lations, in view of observation (27.4); another strategy, made possible by the distinction of an abstract
and a concrete syntax, is to leave the XML representations as they are, but to refrain from introducing
elements in the abstract syntax that would correspond to redundant or semantically irrelevant compo-
nents. This latter possibility exploits the fact that an ideal representation format for a given abstract
syntax, while requiring every annotation structure to be representable, and every representation to be
unambiguous, does leave open the possibility that annotation structures have more than one representa-
tion. Applied to the annotation of implicit discourse relations, XML representations with and without
an inserted connective can be considered as alternative representations of the same underlying abstract
annotation structure. Similarly, the ‘supplemental arguments’ of the PDTB may be allowed in the XML
representations, though not occurring in the underlying annotation structures.

CASCADES step 3 defines a maximally parsimonious concrete syntax for a given abstract syntax,
which does not introduce any redundant or semantically irrelevant components, hence a ‘reversal’ of
the procedure outlined in (16) for step 3 would not know what to do with such elements when they
occur in a given concrete syntax. Applying the strategy of leaving a given concrete syntax untouched
as far as redundant or irrelevant elements is concerned, but omitting corresponding elements in an
underlying abstract syntax, we add a first step in the outline of a procedure for performing step 4 in (28)
below, in which redundant and semantically irrelevant elements are identified in the concrete syntax,
and provisions are made for how to omit them in the abstract syntax.

For defining the structures that an abstract syntax should generate, given a concrete syntax, it may be
noted that the XML elements used by the concrete syntax can be divided into those that have a @target
attribute with a markable as value, and those that do not have such an attribute. Entity structures being
pairs 〈m,s〉, consisting of a markable m and some semantic information s (of which a particular abstract
syntax defines the possible forms) correspond to the former kind of XML elements. Link structures,
being of the general form 〈ε,E,ρ〉, do not refer directly to a markable, but may do so indirectly via their
relational component ρ; link structures therefore correspond to the latter kind of XML elements. Both
entity structures and link structures may contain auxiliary structures, as we have seen in some detail
in Section 3.2 for the DiAML abstract syntax; these also correspond to XML elements of the latter
kind, but they differ from the linking elements in that these have two attributes for identifying the two
arguments of a relation, and a third attribute for identifying a relation between the arguments.

With these preliminaries, the following procedure for reconstructing an abstract syntax given a con-
crete syntax can be outlined:

(28) Outline of procedure for defining an abstract syntax given a concrete syntax:

1. Identify all those elements in the concrete representation format which are semantically
redundant or irrelevant; depending on the nature of these elements (e.g. values of an XML

2The abstract syntax for the PDTB annotations developed here differs in many ways from the abstract syntax defined by
Ide et al. (2011), because the aim in the latter case was to construct an abstract syntax which would account for everything
in the PFDTB representations, including those elements which are semantically irrelevant. For example, their abstract syntax
has different relations for textually explicit and implicit discourse relations.

15



attribute, or distinct XML element types) devise ways of treating the concrete syntax as if
these elements or distinctions were not there.

2. For each type of linking element L defined by the concrete syntax define a link structure
〈ε,E,ρ〉 where ε is an entity structure, E is an auxiliary structure {ε1, . . . εn} (a finite set
of entity structures), and ρ is either a relational entity structure 〈m,〈r,q〉〉 or an auxiliary
structure 〈r,q〉. (See Section 2.2: the relational component of a link structure is either a pair
〈r,q〉 or a triple 〈m,〈r,q〉〉, depending on whether the relation r is explicitly expressed in the
primary data.)

3. For each type of non-linking XML element which has a @target attribute define an entity
structure 〈m,s〉, such that:

• m is a markable, corresponding to the value of @target in the XML-element;
• s is an n-tuple 〈s1, . . .sk〉, of which the components s j correspond to the values of the

attributes in the XML element, other than @target and xml:id.

Applied to representations in the PDTB, the first step in (28) is as follows:

(29) 1. The relations NoRel and EntityRel are left out of consideration.

2. Structured values of the sClass attribute, which represents a path in the sense hierarchy,
are treated as consisting simply of the end point of the path.

3. The distinction between explicit and implicit discourse relations is disregarded.

4. Inserted discourse connectives in the annotation of implicit discourse relations are disre-
garded.

5. The annotations of lexical and syntactic properties of the textual realisation of an explicit
discourse relation are disregarded.

6. The ‘supplemental arguments’ of PDTB annotations are disregarded.

Using the procedure outlined in (28) with the first step as in (29), we obtain an abstract syntax
of which the conceptual inventory lists the semantically relevant basic concepts, and the annotation
structures combine these ingredients as follows.

(30) a. Conceptual inventory:

• a finite set of markables, identifying the relevant segments in a given source text;

• a finite set of discourse relations;

• finite sets of elements corresponding to the values of the attribution attributes @source,
@type, @polarity, and @determinacy (see Prasad et al. (2006) for details about
these attributes);

b. Annotation structures:

• Entity structures: An entity structure in general being a pair 〈m,s〉, consisting of a mark-
able m and semantic information s, the possible structures for s are:

– Relational entity structures: s = 〈r,a〉where r is a discourse relation and r is an attri-
bution structure, which is an auxiliary structure in the form of a quadruple 〈u, t, p,d〉
consisting of a source, an attribution type, an attribution polarity, and an attribution
determinacy;

– Argument structures: s is an attribution structure, i.e. the entity structure is of the
form 〈m,a〉, representing a markable which identifies a segment of source text that
is the argument of a discourse relations, and its attribution.

16



• Link structures:
A link structure is a triple 〈ε1,{ε2},ρ〉 where ε1 and ε2 are argument structures and ρ is
either a relational entity structure 〈m,〈r,a〉〉 (used for annotating an explicit discourse re-
lation) or an auxiliary structure 〈r,a〉 consisting of a discourse relation and an attribution
structure (used for annotating an implicit discourse relation).

We can now apply the inner cycle 〈2;5〉 to check the semantic adequacy of this abstract syntax. If
the abstract syntax is indeed adequate (see section 4.2 for applying the inner cycle), we apply step 3
and generate an ideal concrete syntax which is parsimonious and semantically adequate. According to
the procedure for performing step 3 outlined in (16), this leads to the following concrete syntax, which
additionally uses TEI-style markables as values of the @target attribute, rather than PDTB-style spans
and Gorn addresses.

1. For representing argument structures an XML element dRelArgument is introduced.

2. For representing relational entity structures an XML element dRel is introduced.

3. For representing link structures an XML element discourseRelation is introduced, which
replaces both the PDTB elements implicitRel and explicitRel.

4. For representing an attribution structure an XML element attributionRep is introduced.

5. For representing implicit relational structures 〈r,a〉, the @target attribute of the XML element
type dRel is made optional, so that this element can be used for the representation of annotations
of explicit as well as implicit discourse relations.

Applying this concrete syntax to the PDTB example (26), we obtain the representation (31), in which m1
and m2 are markables referring to the same locations in the source text as the PDTB values of the @span
and @gorn attributes. Note that this representation does indicate that an implicit discourse relation is
annotated, although the tag discourseRelation is used rather than the implicitRelation
tag of the PDTB, by the fact that the relation represented by the dRel element does not refer to
a markable. Should one wish to retain the possibility of the PDTB to insert a discourse connec-
tive that could have been used here, then that can be achieved by adding an additional attribute (say
‘insertedConnective’) in the dRel element. A value of this attribute would however be disre-
garded by the semantics; nothing corresponds to it in the abstract syntax.

(31)

<dRelML>
<discourseRelation xml:id="dr1"

arg1="#a1" arg2="#a2" rel="#r1"/>
<dRelArgument xml:id="a1"

target="#m1" attribution="#b1"/>
<dRelArgument xml:id="a2"

target="#m2" attribution="#b21/>
<dRel xml:id="r1"

relName="conjunction" attribution="#a1"/>
<attributionRep xml:id="b1"

target="#m3" aSource="ot" aType="comm"/>
</dRelML>

4.2 Detecting and repairing deficiencies in annotation schemes

Existing annotation schemes have often been developed for a particular annotation task and are not so
much a product of systematic design, but are driven by task- or domain-specific considerations and by
characteristics of the primary data. As a result, some of the details of the annotation representations may
not be satisfactory from a semantic point of view. The CASCADES method, in particular the double
cycle (7) depicted in Fig. 3, can be used to bring such details to light, and indicate how they may be
resolved

17



4.2.1 Recurring events in ISO-TimeML

ISO standard 24617-1 for annotating time and events (ISO, 24617-1:2012) includes a treatment of ref-
erence to recurring or quantified events, copied from their original treatment in TimeML (Pustejovsky,
2003), as illustrated by the annotation (33) of example (32):

(32) John called twice

(33)

<EVENT xml:id="e1" target="#token2” tense="PAST”/>
<TIMEX3 xml:id="t1 target="#token3 type="SET"
freq="2X"/>

<TLINK eventID="#e1" relatedToTime="#t1"
relType="DURING"/>

As pointed out by Bunt and Pustejovsky (2010) and Lee and Bunt (2012), this representation is not very
satisfactory in several respects. First, the ISO-TimeML concrete syntax uses the TIMEX3 tag for all
temporal entities, and distinguishes these entities by means of the @type attribute into periods, dates,
times, measures, and sets. But what kind of temporal entity is “2X” ? Is it a period, a date, a time,
a measure, or a set? It does not fit any of these types, despite the indication type="SET". In fact,
twice should not be considered as denoting a temporal entity at all; it rather denotes a number, counting
how many instances of a certain type of event occurred. Another problem is the use of the “DURING”
relation between the event and the entity “2X”. This relation holds between an event and a period, date
or time during which it occurred, but the relation between an event and the number of its occurrences is
not temporal in nature, hence “DURING” cannot be used here.

These problems are brought out very clearly when we apply the CASCADES cycle 〈4;〈2;5〉∗;3〉 to
the concrete syntax of ISO-TimeML. Step 4 in the cycle immediately runs into a problem because the
<TIMEX3> element does not correspond to a single entity structure in an abstract syntax, but to several
different entity structures, depending on the value of the @type attribute. To take this special role of
the @type attribute into account, the procedure for reconstructing an abstract syntax given a concrete
syntax can be adapted accordingly. A more fundamental problem then appears: for cases like twice in
(33) we get an entity structure of the form 〈m,2〉, which is clearly of a numerical rather than a temporal
character. When the inner cycle 〈2;5〉∗ is applied to the reconstructed abstract syntax, we can hardly
expect the entity structure 〈m,2〉 to be interpreted as anything else than the number 2, but that doesn’t
lead to a coherent semantics for the annotation structure underlying (33), since the link structure in (33)
corresponds to a temporal relation between the entity structure for the event and the numerical entity
〈m,2〉.

From a conceptual point of view the sentence (32) describes a set of two tokens of the same type of
event. Redesigning the abstract syntax so that it reflects this view, twice is interpreted as the cardinality
of a set of events, corresponding in the abstract syntax to one of the elements in an entity structure
describing such a set.

Based on the analysis of events (or, more generally, eventualities) in (Pustejovsky 2003; 2007), ISO
24617-1 characterises an event by nine features:

(34) 1. class (possible values: ‘occurrence’, ‘reporting’, ‘perception’, ‘aspectual’, ‘state’, ‘inten-
sional action’, ‘intensional state’, copied from TimeML)

2. type (possible values: ‘transition’, ‘state’, ‘process’)

3. predicate (the lemma of a verb, noun or adjective)

4. part of speech

5. tense

6. aspect

7. verb form

8. modality

9. polarity

18



For example, the event description in (35) is annotated in ISO-TimeML as shown in (36):

(35) John had not called by midnight

(36)

<EVENT xml:id="e1" target="#m2" ... "#m4"
pred="CALL"
class="OCCURRENCE" type="TRANSITION"
pos="VERB" tense="PAST" aspect="NONE"
vform="NONE" modality="NONE" polarity="NEG"/>

According to Bunt (2011a) this analysis can be simplified. First, the attributes @pos (part of speech)
and @vform (verb form) are evidently not semantic in character. Second, the attribute @pred is se-
mantically relevant only if its values are not just strings (as is the case in TimeML, where their value
has the XML type ‘CDATA’), but refer to elements in a repository of semantic concepts, e.g. an event
ontology. Such a repository should contain such information as whether a call event is a state, a process,
or a transition (the three possible values of @type), and whether it is a reporting event, a perception
event, or an intentional state (three of the possible values of @class). Hence the specification of the
‘class’ and the ‘type’ of the event are redundant. An event therefore corresponds in the abstract syntax
to an entity structure which is a 5-tuple, 〈predicate, tense, aspect, modality, polarity〉.

For dealing with sets of events, as in John called twice, ISO-TimeML has no provisions (only sets
of temporal objects can be represented, using the TIMEX3 element with the type attribute having
the value "SET"). A minimal amendment to ISO-TimeML to make this possible is to introduce an
attribute in EVENT elements that can have the value "SET", and give this value a similar special role
as the @type attribute in the TIMEX3 element. We will call this attribute @signature. Moreover,
when representing a set of events in this way we also want to be able to represent information about its
cardinality, so we introduce an additional attribute @cardinality. The procedure for constructing
an abstract syntax, adapted for the special role of @signature, introduces for EVENT elements with
@signature value "SET" an entity structure which is a 7-tuple 〈predicate, tense, aspect, modality,
polarity, signature, cardinality〉.

As before, the inner design cycle 〈2;5〉∗ of the CASCADES model can be applied to check the
semantic adequacy of the resulting abstract syntax. If the result of this check is positive (see section
4.2), application of the last step of the outer cycle 〈4;3〉 generates an ideal concrete syntax which is able
to represent repetitions of events in a semantically adequate way. For the example of John called twice,
the result would be (omitting attributes with default values and with value "NONE"):

(37)
<EVENT xml:id="e1" target="#token2"
type="CALL" tense="PAST"
signature="SET" cardinality="2"/>

This representation illustrates the power of using ideal representation formats, saying in an optimally
transparent way that two call-events occurred in the past. It is simpler than (33) and semantically more
accurate.

4.2.2 Annotating functional and feedback relations in dialogue

As already mentioned in Section 2.1 in connection with the metamodel for dialogue act annotation in
Fig. 1, and briefly considered in Section 3.1, ISO standard 24617-2 for dialogue act annotation includes
not only the annotation of dialogue acts, but also of relations between dialogue acts. Three types of
relations are distinguished:

1. functional dependence relations, which relate dialogue acts that are responsive in nature, such as
Answer, Confirmation, Agreement, Accept Apology, and Decline Offer to the dialogue act that
they respond to;

19



2. feedback dependence relations, which relate a feedback act, i.e. a dialogue act which provides
or elicits information about the processing of something that was said before, to the relevant
elements in the dialogue history;

3. rhetorical relations, which indicate semantic relations like Explanation, Elaboration, or Cause
between dialogue acts or their contents.

Responsive dialogue acts have a semantic content that depends crucially on the dialogue act they
respond to, and it is perhaps not a coincidence that they can be expressed by utterances that by them-
selves have little or no semantic content, such as “Yes”, “No thanks”, “No problem”, and “OK”. The
marking up of functional dependence relations in DiAML offers the possibility to for example annotate
a functional segment not only as expressing an answer, but also indicating which question it answers.

DiAML was developed systematically using the CASCADES approach, defining a metamodel in a
first stage of conceptual analysis, and subsequently an abstract syntax. Note that, according to the steps
and stages of CASCADES shown in Fig. 3, the definition of a semantics and a representation format
for the abstract syntax in steps 2 and 3 can be done in any order. An advantage of first taking step 2
and even better the cycle 〈2;5〉∗, is that the abstract syntax is checked for being semantically adequate
before effort is spent on designing a representation for it. On the other hand, simultaneously performing
steps 2 and 3 and subsequently applying the cycle 〈4;〈2;5〉∗;3〉 may be quicker, since a first version of
the representation format can be ready when the semantics is defined, and the cycle 〈4;〈2;5〉∗;3〉 can be
performed as a check of semantic adequacy, which will typically lead to relatively minor changes in the
representation. In the case of DiAML the definition of a semantics and of a representation format were
constructed in parallel. The preliminary version ISO DIS 24617-2:2010 of the standard (henceforth:
‘DIS-DiAML’), corresponds to a stage where an abstract and a concrete syntax had been defined as well
as the semantics of entity structures, but where the semantics of link structures was not fully defined.

Example (39) shows the representation of a functional dependence relation according DIS-DiAML,
of the dialogue fragment (38)3, using a functionalLink element to represent the dependence be-
tween question and answer (where the answer is expressed by the discontinuous functional segment
“No (..) there isn’t”).

(38)
1. C: Is there an earlier connection?
2. A: No, I’m sorry, there isn’t.

(39)

<diaml xmlns:
"http://www.iso.org/diaml/"/>

<dialogueAct xml:id="e1" target="#fs1"
sender="#c" addressee="#a"
communicativeFunction="propositionalQuestion"
dimension="task"/>

<dialogueAct xml:id="e2" target="#fs2"
sender="#a" addressee="#c"
communicativeFunction="answer" dimension="task"/>

<functionalLink
dact="#e2"
functionalAntecedent="#e1"/>

<dialogueAct xml:id="e3" target="#fs3"
sender="#a" addressee="#c"
communicativeFunction="apology"
dimension="social obligations"/>

</diaml>

In the abstract syntax of DIS-DiAML, all relations between dialogue acts would be annotated by
means of link structures, so the annotation structure for (38) consists of three entity structures ε1, ε2,

3From the OVIS corpus, see http://www.let.rug.nl/˜vannoord/Ovis.

20



and ε3, corresponding to the question, the answer, and the apology, respectively, and one link structure
L1 for the functional relation between question and answer.

(40) AS = {ε1,ε2,ε3,L1}, with L1 = 〈ε2,{ε1},〈R f u,〈〉〉〉

Application of CASCADES step 2 and developing a formal semantics which takes the various pos-
sible relations between dialogue acts fully into account, reveals that this is not a semantically adequate
annotation.

Underlying the analysis of dialogue in terms of dialogue acts is the ‘information-state update’ ap-
proach, which views dialogue acts semantically as updates of the information states of dialogue partic-
ipants (Bunt, 1989; 2000; 2011b; Poesio & Traum, 11997; 998; Traum & Larsson, 2003; Petukhova,
2011). On this approach, each type of dialogue act corresponds to a particular update operation. The
semantics of an annotation structure {ε1, ..,εn, L1, ..,Lk}, consisting of the entity structures {ε1, ..,εn}
and the link structures {L1, ..,Lk}, is defined as the successive application of the update operations cor-
responding to each of the entity and link structures, ordered by the textual order <T of their functional
segments, where the update operations corresponding to textually coinciding (‘=T ’) entity structures
are unified rather than sequenced. The notation ;/t is used to indicate this: formally, ‘α ;/t β ’ means
that the operation α should be followed (‘;’) by the operation β if α <T β ; if α =T β then the two
operations should be unified (t). (See Bunt, 2011b; 2012b for details and examples.)

(41) Ia({ε1, ..,εn,L1, ..,Lk}) = Ia(e1) ;/t ...;/t Ia(en) ;/t Ia(L1) ;/t ... ;/t Ia(Lk)

Successive application of the information state update operations for each of these structures runs
into the problem, however, that the update operation for ε2 cannot be defined independently of the link
structure L1, since the link to the answer’s question is needed for determining the semantic content that
is negated by A saying “No it isn’t”.

Applying the CASCADES cycle 〈5;2〉 to repair this, we may note that the source of the problem
is that the semantic information about the answer is split up into a ‘local’ part in the entity structure ε2
and the functional dependence part in the link structure L1. These two parts should not be separated; the
functional dependence information is an inseparable part of the semantic characerisation of an answer
and should thus be in the entity structure. Rather than (40), the annotation structure for (38) should
therefore be (42):

(42) AS′ = {ε1,ε2,ε3} with ε2 = 〈m2,〈P2,P1, /0,d1,F7,〈〉〉,〈{ε1,R f u〉〉

For feedback dependence relations the situation is essentially the same as for functional dependence
relations: the semantics of a feedback act crucially depends on what previous element(s) in the dialogue
the feedback is about; therefore a feedback dependence should be treated as being part of the entity
structure that characterises the feedback act, rather than as a link structure (as in DIS-DiAML).

For rhetorical relations the situation is different, since they provide information about why a dialogue
act occurs, rather than being part of the semantics of the dialogue acts. A link structure L = 〈ε,E,ρ〉
is interpreted semantically as a set of updates that create rhetorical links between the representations in
the participants’ information states of the dialogue acts in ε and E.

Applying CASCADES step 3 to the revised abstract syntax, we obtain a semantically adequate
ideal representation format, illustrated by the representation (43) for example (38), in which the entity
structure ε2 contains the attribute @functionalDependence whose value specifies the question to
which the dialogue act in ε2 forms the answer.

21



(43)

<diaml xmlns:
"http://www.iso.org/diaml/"/>

<dialogueAct xml:id="e1" target="#fs1" sender="#c"
addressee="#a" dimension="task"
communicativeFunction="propositionalQuestion"/>

<dialogueAct xml:id="e2" target="#fs2"
sender="#a" addressee="#c"
communicativeFunction="answer" dimension="task"
functionalDependence="#e1"/>

<dialogueAct xml:id="e3" target="#fs3" sender="#a"
addressee="#c" communicativeFunction="apology"
dimension="social obligations"/>

</diaml>

5 Conclusions

The CASCADES approach to the design of semantic annotation languages brings three main innova-
tions.

First, compared to the usual way of defining a formal language, a component has been added which
specifies the categories of information that can be expressed in the language, and the ways in which
elements of these categories may be combined. This ‘abstract syntax’ specification is in set-theoretical
terms, independent of any representation format. What is traditionally called a syntax, by contrast, con-
cerns a particular representation format, and corresponds with a ‘concrete syntax’ in this approach. This
distinction is particularly important in the context of defining annotation standards, since according to
the ISO Linguistic Annotation Framework, standards should be defined at an abstract level, independent
of any representation format. The introduction of an abstract syntax layer in the definition of an anno-
tation language supports a principled view on the information that annotations are intended to capture,
and is helpful in the design of well-founded semantic annotation standards, starting from a conceptual
analysis, and resulting in semantically interpreted, maximally simple and transparent representations.

Second, it has been shown that the semantics of an annotation language can be defined as a spec-
ification of the meanings of the annotation structures defined by the abstract syntax (rather than as a
description of the meanings of representations defined by a concrete syntax). This has the advantage
that any representation format which defines a rendering of the structures defined by the abstract syntax
inherits the same semantics from the abstract syntax; this is beneficial for improving the interoperability
of semantically annotated corpora that use different representation formats.

Third, the notion of an ‘ideal representation format’ has been introduced for a format which is able to
represent every annotation structure defined by the abstract syntax, and where each representation is the
rendering of exactly one annotation structure. It was shown that any two ideal representation formats
can be converted to each other through a strictly meaning-preserving mapping. Ideal representation
formats have the advantage of being maximally simple, representing only the conceptual distinctions
made in the abstract syntax and the underlying metamodel, and being optimally transparent, having a
direct correspondence with conceptual distinctions.

In addition to these conceptual innovations, the CASCADES methodology comes with outlines of
procedures for going systematically from stage of annotation design to another. A conceptual analysis
of an annotation domain, expressed in the form of a metamodel, was shown to allow the systematic
construction of an abstract syntax, and a given abstract syntax was shown to allow the systematic con-
struction of an ideal XML-based concrete syntax, defining a particular representation format. Moreover,
a given abstract syntax was shown to allow the systematic definition of a DRT-based semantics for those
domains where this form of semantics is appropriate. The CASCADES methodology thus offers a
systematic process for developing a semantic annotation language, starting with a conceptual analysis.

The procedures for stepping from design stage to another can more or less be inverted, which is
especially interesting for constructing an abstract syntax from a concrete syntax rather than the other
way round. This makes the design of semantic annotations using the CASCADES stages more realistic,

22



both for allowing systematic feedback cycles and for allowing the process to start from an existing
annotation format. This was illustrated for the annotation of discourse relations in text, starting from the
Penn Discourse Treebank.

These feedback cycles make the CASCADES model also useful for detecting deficiencies in existing
or developing annotation schemes and pointing the way for how to resolve them. This was illustrated for
problems in the annotation of recurring events in ISO-TimeML and of dependence relations in dialogue
using DiAML.

Acknowledgements

The establishment of the CASCADES methodology has benefited greatly from discussions with col-
leagues in the business of developing standards for interoperable annotations, and from application of
the methodology in ISO projects that aim to define international standards for semantic annotation. I
would like to thank in particular Nancy Ide, James Pustejovsky, Rashmi Prasad, Kiyong Lee, Laurent
Romary, Volha Petukhova, David Traum, Jan Alexandersson, Andrei Popescu-Belis, Martha Palmer,
Alex Fang, and Aravind Joshi.

I would also like to thank two anonymous reviewers, whose insightful and detailed comments have
been very important for bringing this paper in its present form.

References

Allen J. and M. Core (1997) DAMSL: Dialogue Act Markup in Several Layers (Draft 2.1). Technical
Report. University of Rochester, Rochester, NY.

Bonial, C., S. Windisch Brown, W. Corvey, M. Palmer, V. Petukhova and H. Bunt (2011b) An Ex-
ploratory Comparison of Thematic Roles in VerbNet and LIRICS. In Proc. 6th Joint ACL-ISO Work-
shop on Interoperable Semantic Annotation ISA-6, Oxford

Bonial, C., W. Corvey, M. Palmer, V. Petukhova and H. Bunt (2011b) A Hierarchical Unification of
LIRICS and VerbNet Semantic Roles. In Proc. ICSC Workshop on Semantic Annotation for Compu-
tational Linguistic Resources (SACL-ICSC 2011), Stanford.

Bunt, H. (1989) Information dialogues as communicative action in relation to partner modelling and
information processing. In: M. Taylor, F. Néel, and D. Bouwhuis D (eds) The structure of multimodal
dialogue. North-Holland, Amsterdam, pp. 47–74.

Bunt, H. (2000) Dialogue pragmatics and context specification. In: H. Bunt and W. Black (eds) Abduc-
tion, Belief and Context in Dialogue. Benjamins, Amsterdam, pp. 81–150.

Bunt, H. (2009a) Semantic Annotation as Complementary to Underspecified Semantic Representations.
In: Proc. IWCS 2009, the Eighth International Conference on Computational Semantics, Tilburg, pp.
33–44.

Bunt H. (2009b) The DIT++ taxonomy for functional dialogue markup. In: Proc. of EDAML/AAMAS
Workshop “Towards a Standard Markup Language for Embodied Dialogue Acts, Budapest, pp. 13–
24. Available (with updates) at http:///dit.uvt.nl

Bunt, H. (2010) A Methodology for designing semantic annotation languages exploiting syntactic-
semantic iso-morphisms. In: A. Fang, N. Ide, and J. Webber (eds.) Proc. ICGL 2010, the 2nd In-
ternational Conference on Global Interoperability for Language Resources, Hong Kong, pp. 29–45.

Bunt, H. (2011a) Introducing abstract syntax + semantics in semantic annotation, and its consequences
for the annotation of time and events. In E. Lee and A. Yoon (eds), Recent Trends in Language and
Knowledge Processing. Hankukmunhwasa, Seoul, pp. 157-204.

23



Bunt, H. (2011b) The Semantics of Dialogue Acts. In: Proc. of IWCS 2011, the Ninth International
Conference on Computational Semantics, Oxford, pp. 1–14.

Bunt, H. (2012a) Annotations that effectively contribute to semantic interpretation. In: H. Bunt, J. Bos
and S. Pulman (eds.) (forthc.) Computing Meaning, Vol. 4. Springer, Berlin, pp. 49-72.

Bunt, H. (2012b) A context-change semantics for dialogue acts. In: H. Bunt, J. Bos and S. Pulman (eds.)
(forthc.) Computing Meaning, Vol. 4. Springer, Berlin, pp. 145-167.

Bunt, H. and J. Pustejovsky (2010) Annotation of temporal and event quantification. In: Proc. Fifth
Joint ACL-ISO Workshop on Interoperable Semantic Annotation ISA-5, Hong Kong, pp. 15–22.

Bunt, H. and L. Romary (2002) Towards Multimodal Content Representation. In: K.S. Choi (ed) Proc.
of LREC 2002, Workshop on International Standards of Terminology and Language Resources Man-
agement, Las Palmas. ELRA, Paris, pp 54–60.

Bunt, H. and L. Romary (2004) Standardization im Multimodal Content Representation: Some Method-
ological Issues. In: Proc. 4th International Conference on Language Resources and Evaluation
(LREC 2004), Lisbon. ELRA, Paris, pp 2219–2222.

Bunt, H, J. Alexandersson, J. Carletta, J.-W. Choe, A.Fang, K. Hasida, K. Lee, V. Petukhova, A.
Popescu-Belis, L. Romary, C. Soria, and D. Traum (2010) Towards an ISO standard for dialogue act
annotation. In: Proc. 7th International Conference on Language Resources and Evaluation (LREC
2010), Malta. ELRA, Paris.

Bunt, H, J. Alexandersson, J.-W. Choe, A.Fang, K. Hasida, K. Lee, V. Petukhova, A. Popescu-Belis,
L. Romary, and D. Traum (2012) A semantically-based standard for dialogue annotation. In: Proc.
8th International Conference on Language Resources and Evaluation (LREC 2012), Istanbul. ELRA,
Paris.

Clark, H. (1996) Using Language. Cambridge University Press, Cambridge, UK.

Gorn, S. (1965) Explicit definitions and linguistic dominoes. In J. Hart and S. Takasu (eds) Systems and
Computer Science. University of Toronto Press, Toronto, Canada.

Ide, N. and H. Bunt (2010) Anatomy of Annotation Schemes: Mappings to GrAF. In: Proc. of LAW-IV:
the Fourth Linguistic Annotation Workshop, Uppsala, pp. 115–124.

Ide, N. and L. Romary (2004) International Standard for a Linguistic Annotation Framework. Natural
Language Engineering 10:211–225.

Ide, N. and L. Romary (2006) Representing Linguistic Corpora and their Annotations. In: Proc. 5th

International Conference on Language Resources and Evaluation (LREC 2006), Genoa. ELRA, Paris.

Ide, N. and K. Suderman (2007) GrAF: A Graph-based Format for Linguistic Annotations. In Proc.
First Linguistic Annotation Workshop, Prague, pp. 1–8.

Ide, N., R. Prasad and A. Joshi (2011) Towards Interoperability for the Penn Discourse Treebank. In
Proc. 6th Joint ACL-ISO Workshop on Interoperable Semantic Annotation (ISA-6), Oxford, pp. 49-
55.

ISO-DIS 24617-2:2010 Language Resource Management - Semantic Annotation Framework, Part 2:
Dialogue Acts, Draft International Standard. ISO, Geneva.

ISO 24612:2012 Language Resource Management: Linguistic annotation framework, ISO, Geneva.

ISO 24617-1:2012 Language Resource Management - Semantic AnnotationFramework, Part 1: Time
and Events, International Standard. ISO, Geneva,

24



ISO 24617-2:2012 Language Resource Management - Semantic Annotation Framework, Part 2: Dia-
logue Acts, International Standard. ISO, Geneva.

Kamp, H. and U. Reyle (1993) From Discourse to Logic. Kluwer, Dordrecht.

Lee, K. and H. Bunt (2012) Counting time and events. In Proc. of “ISA in Pisa”, the 8th Joint ACL -
ISO Workshop on Interoperable Semantic Annotation (ISA-8), Pisa, pp. 34-42.

Palmer, M., D. Gildea, and P. Kingsbury (2005) The Proposition Bank: An Annotated Corpus of Se-
mantic Roles, Computational Linguistics 31 (1), 71-106.

Petukhova, V. (2011) Multidimensional Dialogue Modelling. Ph.D. Thesis, Tilburg University.

Petukhova, V. and H. Bunt (2010) Introducing communicative function qualifiers. In: A. Fang, N. Ide,
and J. Webber (eds.) Proc. of ICGL 2010, the Second International Conference on Global Interoper-
ability for Language Resources, Hong Kong, pp. 123–131.

Poesio M. and D. Traum (1997) Conversational actions and discourse situations. Computational Intelli-
gence 13(3), 309 – 347.

Poesio M, Traum D (1998) Towards an axiomatization of dialogue acts. In: J. Hulstijn and A.Nijholt
(eds) Proc. Twente Workshop on the Formal Semantics and Pragmatics of Dialogues, Enschede, pp.
207-222.

Prasad, R., N. Dinesh, R. A. Lee, A. Joshi and B. Webber (2008) Annotating Attribution in the Penn
Discourse Treebank. In Proc. ACL 2006 Workshop on Sentiment and Subjectivity in Text, Sydney, pp.
31-38.

Prasad, R., N. Dinesh, A. Lee, E. Miltsakaki, L. Robaldo, A. Joshi and B. Webber (2008) The Penn Dis-
course Treebank 2.0. In Proc. 6th International Conference on Language Resources and Evaluation
(LREC 2008), Marrakech.

Pustejovsky, J., J. Castano, R. Ingria, R. Gaizauskas, G. Katz, R. Saurı́, and A. Setzer (2003) TimeML:
Robust Specification of Event and Temporal Expressions in Text. In: Proc. 5th International Work-
shop on Computational Semantics (IWCS-5), Tilburg, pp. 337–353.

Pustejovsky, J., R. Ingria, R. Saurı́, J. Gastano, J. Littman, R. Gaizauskas, A. Setzer, G. Katz, and C.
Habel (2005) The Specification Language TimeML. In: I. Mani, J. Pustejovsky, and R. Gaizauskas R
(eds) The Language of Time, Oxford University Press, Oxford.

Pustejovsky, J., R. Knippen, J. Littman, and R. Saurı́ (2007) Temporal and Event Information in Natural
Language Text. In: H. Bunt and R. Muskens (eds) Computing Meaning, Vol. 3. Springer, Berlin, pp.
301–346.

Pustejovsky, J., K. Lee, H. Bunt, and L. Romary (2010) ISO-TimeML: An International Standard for
Semantic Annotation. In: Proc. Sevenfth International Conference on Language Resources and Eval-
uation (LREC 2010), Malta. ELRA, Paris, pp. 394–397.

TEI (2009) TEI P5: Guidelines for Electronic Text Encoding and Interchange. Lou Burnard and Syd
Bauman, editors. Text Encoding Initiative Consortium, Oxford.

Traum D. and S. Larsson (2003) The information state approach to dialogue management. In: J. van
Kuppevelt and R. Smith) (eds) Current and New Directions in Discourse and Dialogue, Kluwer,
Dordrecht, pp. 325–345.

25


