
A METHODOLOGY FOR DESIGNING SEMANTIC ANNOTATION
LANGUAGES EXPLOITING SEMANTIC-SYNTACTIC

ISO-MORPHISMS

Harry Bunt
Tilburg Center for Creative Computing

Dept. of Communication & Information Sciences,
Tilburg University, The Netherlands,

harry.bunt@uvt.nl

Abstract
This paper presents a methodology for the design of
languages for semantic annotation. Central in this
methodology is the specification of a representation
format as a rendering of conceptual structures de-
fined by anabstract syntax, which specifies in set-
theoretical terms the possible information contents
of annotations. The notion of anideal representa-
tion format is introduced, which is related through
an isomorphism to the set of conceptual structures,
defined by the abstract syntax. This guarantees that
every conceptual structure has a unique representa-
tion, and that every representation is the rendering
of a unique conceptual structure. Moreover, the se-
mantics of the annotation language is defined for
theabstractsyntax and is shared by all its represen-
tations. It is shown that this guarantees that every
ideal representation format is convertible through a
meaning-preserving mapping to any other ideal rep-
resentation format.

The methodology is illustrated by its application to
two ongoing ISO projects, concerned with the es-
tablishment of standards for the annotation of text
with (a) information about time and events, and (b)
information about communicative functions in dia-
logue.

1 Introduction

Language technology, computational linguistics,
and present-day linguistics rely on large-scale an-
notated corpora. The process of making annota-
tions is usually viewed as the attachment of certain
labels to textual elements, such as part of speech
labels or named entity tags, and is not commonly
thought of as involving the use of an annotation
language. But when it comes to semantic annota-
tion, the situation is different. For example, Puste-
jovsky et al. (2003; 2005; 2007) have developed
the XML-based language TimeML for the annota-
tion of texts with information relating to time and
events. The complexity of this kind of information
is such that the annotations do not take the form of
simple labels, but of expressions in a formal lan-
guage.

The specification of a formal language usually
consists of two parts: a syntax and a semantics.
The syntax defines a class of expressions; the se-
mantics describes what these expressions mean.
This is commonly found in the definition of the
languages of logic and computer science. An ex-
ception is the specification of XML, which con-
sists of a syntax only and leaves its interpreta-
tion to the understander. For many applications of
XML, such as syntactic or morphosyntactic anno-
tation, this is good enough, but when it comes to
semantic annotation, the lack of a semantics raises
a serious question: since semantic annotations are
meant to capture part of the meaning of the an-
notated text, if the annotations don’t have a well-
defined meaning, then why would they capture
meaning in text better than the text itself? Bunt
& Romary (2002) have therefore formulated the
requirement ofsemantic adequacyfor a semantic
annotation language: it should have a well-defined
semantics.

Another methodological requirement for the de-
sign of annotation languages comes from the ISO
Linguistic Annotation Framework (LAF, Ide &
Romary, 2004; ISO 24612, 2009). This frame-
work draws a distinction between the concepts of
annotationand representation. The term ‘anno-
tation’ refers to the linguistic information that is
added to segments of language data, independent
of the format in which the information is repre-
sented. The term ‘representation’ refers to the for-
mat in which an annotation is rendered, for in-
stance in XML, independent of its content. Ac-
cording to LAF,annotationsare the proper level
of standardization, rather thanrepresentations.

In order to deal with both requirements, we pro-
pose a design methodology for semantic annota-
tion languages which includes a syntax that spec-

ifies besides a class ofrepresentation structures
also a class of more abstractannotation structures.
These two components of the language specifica-
tion are called itsconcreteandabstract syntax, re-
spectively. The concrete syntax defines a particu-
lar rendering of the annotation structures. More-
over, a semantics is specified which is defined for
theabstractrather than for the concrete syntax.

More specifically, the proposed methodology
consists of carrying out the following four steps,
with as many feedback loops as may be desired
until the end result is considered satisfactory:

1. establish a conceptual view of the informa-
tion to be captured in annotations; such a
view is sometimes called a ‘metamodel’ and
often visualized as a UML diagram;

2. articulate the conceptual view in the form of a
formal specification of its categories of enti-
ties, relations, and information structures that
can be built up with them (an ‘abstract syn-
tax’);

3. provide a formal semantics for the structures
defined by the abstract syntax;

4. specify a representation format for the struc-
tures defined by the abstract syntax (a ‘con-
crete syntax’).

This methodology has been developed during
the ISO project “Semantic annotation framework,
Part 1: Time and events” (“SemAF/Time”, for
short), which is currently nearing completion (see
ISO DIS 24617-1, 2009), and has played a part in
this project without having been applied systemat-
ically. In this paper we will illustrate the method-
ology on the one hand by showing how its more
systematic application can be used to improve the
design of the resulting annotation language, and
on the other hand how it is being applied system-
atically in the ongoing ISO project “Semantic an-
notation framework, Part 2: Dialogue acts” (ISO
CD 25617-2, 2009) - “SemAF/Dialogue acts”, for
short.

The rest of this paper is organized as follows.
Section 2 describes the components in the pro-
posed design methodology in some more detail.
Section 3 illustrates the methodology by show-
ing the relation between a metamodel and an ab-
stract syntax in the case of the SemAF/Dialogue
acts project. Section 4 illustrates the methodology
in more detail by describing the abstract syntax
and an ideal representation format in the case of

the SemAF/Time project, and by showing how the
use of the methodology can improve the current
state of the representation format proposed in the
project. We end with some general conclusions in
section 6.

2 Components of the proposed
methodology

In this section we briefly explain the components
of the 4-step methodology, as indicated above, be-
fore turning to illustrations in the design of lan-
guages for the annotation of dialogue recordings
with dialogue act information, and for the anno-
tation of documents with time- and event-related
information.

2.1 Metamodel and conceptual view

The design of any annotation language should be-
gin with a specification of the information to be
captured in the annotations. Such a specification is
initially informal, in the form of a conceptual anal-
ysis formulated in natural language, but should be
made as precise as possible. In ISO projects it
is customary to cast this analysis in the form of
a ‘metamodel’, i.e. a listing of the categories of
entities and relations to be considered, often vi-
sualized by a UML-like diagram. An example of
such a conceptual analysis and its expression in a
metamodel is provided in section 3.1.

2.2 Abstract syntax

The abstract syntax of a semantic annotation lan-
guage defines the set-theoretical structures which
constitute the information that may be contained
in annotations. It consists of (a) a specification
of the elements from which these structures are
built up, called a ‘conceptual inventory’; and (b)
rules which describe the possible combinations of
these elements into annotation structures. Two ex-
amples of an abstract syntax are provided in this
paper. Section 3.3 contains the abstract syntax of
the Dialogue Act Markup Language (DiAML) de-
signed in the SemAF/Dialogue acts project; and
section 4.1 summarizes the abstract syntax of the
ISO-TimeML language under development in the
SemAF/Time project.

2.3 Semantics

A distinguishing feature of the proposed method-
ology is that the semantics is defined for the struc-
tures of the abstract syntax, rather than for the ex-
pressions that represent these structures. In the

SemAF/Time project, a semantics is defined for
the ISO-TimeML representation format by trans-
lating these representations (which are XML ex-
pressions) into a form of first-order logic.

The great advantage of attaching the semantics
to the abstract rather than to a concrete syntax is
that any representation format which forms a ren-
dering of the abstract annotation structures inherits
the same semantics – see the next subsection.

2.4 Concrete syntax and ideal representation
formats

A representation of annotation structures can be
said to beideal if it gives an exact expression of
the information in annotation structures. More
precisely, we define a concrete syntax to be ideal
for a given abstract syntax if there is a one-to-one
correspondence between the structures defined by
the abstract syntax and those defined by the con-
crete syntax, i.e.:

• every annotation structure defined by the ab-
stract syntax has a unique representation de-
fined by the concrete syntax;

• every representation defined by the concrete
syntax is the rendering of a unique annotation
structure defined by the abstract syntax.

Note that an ideal concrete syntax F1 defines
a function F1 from annotation structures to Fi-
representations, and an inverse functionF−1

1 from
F1-representations to annotation structures. In
other words, the abstract and the concrete syntax
areisomorphic.

Since this holds forany ideal concrete syntax,
it follows that any two ideal representation for-
mats are isomorphic. Given two ideal represen-
tation formats Fi and Fj we can define a homo-
morphic mappingCij from Fi-representations to
Fj-representations by

(1) Cij =D Fj ◦ F−1

i , i.e. Cij(r) = Fj(F
−1

i (r))
for any Fi-representationr

and conversely, a a homomorphic mappingCji

from Fj-representations to Fi-representations by

(2) Cji =D Fi ◦ F−1

j , i.e. Cji(r) = Fi(F
−1

j (r))
for any Fj-representationr

These two mappings constituteconversions
from one format to the other, i.e. they con-
stitute one-to-onemeaning-preservingmappings:
if µ(r) denotes the meaning of representationr,

then µ(Cij(r)) = µ(r) for any Fi-representation
r, and conversely,µ(Cji(r

′)) = µ(r′) for any Fj-
representationr′. This meaning preservation is
based on the fact that the meaning of a represen-
tation using an ideal format Fk is by definition the
meaning of the annotation structure which it rep-
resents:

(3) µ(r) =D Ia(F−1

k
(r))

whereIa is the interpretation function defining the
semantics of the abstract syntax (see 4.2.1). There-
fore, for any F1-representationr:

(4)

µ(Cij(r)) = µ(Fj(F
−1

i (r)))
Ia(F−1

j (Fj(F
−1

i (r)))

Ia(F−1

i (r))
µ(r)

3 Illustration: dialogue act annotation

We illustrate here the formulation of a concep-
tual view of what a particular semantic annotation
schema is about, and how this may be visualized in
a metamodel, for the case of the SemAF/Dialogue
acts project. We subsequently illustrate the notion
of an abstract syntax for the case of DiAML, and
discuss how it relates to the metamodel.

3.1 Conceptual view and metamodel for
dialogue act annotation

A dialogue act1 is conceived as a unit in the se-
mantic description of communicative behaviour
in dialogue, specifying how the behaviour is in-
tended to change the information state of a dia-
logue participant who understands the behaviour
correctly (i.e. as intended by the speaker).
The specification of intended information state
changes (‘updates’) requires two ingredients: (1)
a specification of the information with which the
information state is to be updated; (2) a specifi-
cation of the way in which that information is to
be used in updating the information state. These
two ingredients are called thesemantic content
and thecommunicative functionof the dialogue
act, respectively. Formally, a dialogue act is an
information-state update operator construed by ap-
plying a communicative function to a semantic
content.

A dialogue act being a unit in the semantic de-
scription of communicative behaviour, the ques-
tion arises what stretches of such behaviour are

1This subsection uses some material adapted from section
4 of ISO document N442 rev 05 (ISO CD 24617-2-2009-10-
05).

considered as corresponding to dialogue acts. The
identification of meaningful stretches of dialogue
is called the segmentation of the dialogue. Di-
alogues are often segmented into turns, defined
as the stretches of speech contributed by a single
speaker, but turns can be quite lengthy and com-
plicated, and are for most purposes too coarse as
the stretches of behaviour to assign communica-
tive functions to. These can be assigned more ac-
curately to smaller units, which we callfunctional
segments, and which we define as the functionally
relevant minimal stretches of communicative be-
haviour.

According to the definition given in the first sen-
tence of this subsection, a dialogue act has at least
two participants: (1) an agent whose communica-
tive behaviour is interpreted, usually called the
“speaker”, or “sender”; and (2) a participant that
he addresses and whose information state he wants
to influence, called the “addressee” (also called
“hearer” or ”recipient”). There may of course be
more than one addressee. There may additionally
be various types of side-participants who witness
a dialogue without participating in it. The pres-
ence of side-participants may influence the com-
municative behaviour of the participants, if these
are aware of their presence, as in a television inter-
view or a talk show. Clark (1996) distinguishes be-
tween ‘overhearers’, ‘side-participants’ and ‘by-
standers’, depending on the role they play in the
communicative situation; we will use ‘overhearer’
as a cover term, allowing finer distinctions to be
drawn when necessary.

Of the two most central aspects of a dialogue
act, the communicative function and the seman-
tic content, the former corresponds intuitively to
the type of actionthat is performed, and as men-
tioned above, the term “dialogue act annotation”
is commonly used to describe the assignment of
communicative function labels to stretches of di-
alogue. A semantically more complete character-
ization of a functional segment also provides in-
formation about thetype of semantic content. For
example, the DAMSL annotation schema makes a
coarse 3-way distinction of semantic content types
into Task, Task Management, and Communica-
tion. These values indicate whether the seman-
tic content of the dialogue act is concerned with
performing the task that underlies the dialogue,
or with discussing how to perform the task, or
with the communication. The DIT++ annotation

scheme (Bunt, 2009) makes a more fine-grained
distinction of semantic content type by distin-
guishing communication-related information into
a number of subtypes, such as information about
the processing of something that was said be-
fore (feedback information), about the allocation
of turns (turn management information), or about
the structuring of the dialogue (topic and dialogue
structure information). These types of semantic
content are also called‘dimensions’.

Many types of dialogue act have a responsive
character, being semantically dependent on one
or more dialogue acts that occurred earlier in the
dialogue. This is for example the case for an-
swers, whose meaning depends on which ques-
tion is being answered; but also for the accep-
tance or rejection of offers, suggestions, invita-
tions, and requests; and for accepting an assign-
ment of the turn, or responding to a greeting. For
these dialogue acts, an important aspect that may
be marked up is the relation to the ‘antecedent’
on which their meaning depends. This relation is
called a ‘functional dependence relation’.

Feedback-providing and eliciting acts are in a
sense also responsive, as they relate to what hap-
pened earlier in the dialogue, but in a different
way. Feedback acts are concerned with the pro-
cessing of what was said before - such as its per-
ception, interpretation, or evaluation. The differ-
ence is that feedback acts are about the processing
of what was saidearlier, rather than responding to
the dialogue acts that were expressed. This rela-
tion is called a ‘feedback dependence relation’.

In the characterization of the notion of a dia-
logue act and its realization, as given so far, the
following key elements occur, which form the
backbone of the metamodel for dialogue act an-
notation shown in Figure 1.

• sender (or ‘speaker’)

• addressee(s)

• participants in other roles (‘overhearers’)

• functional segment

• dialogue act

• communicative function

• semantic content type (‘dimension’)

• functional dependence relation

• feedback dependence relation

dialogue

?

1..1

1..N

functional
segment

?

1..1

1..N

participant

�1..N 1..1addressee

1..1 1..1� sender

others0..N 1..1
�

semantic
dimension

communicative
function

1..1

1..1

�
�

�
�	

@
@

@
@R

1..1

1..1

dialogue act

functional dep. rel.

1..N

1..N?

feedback dep rel.

1..N

1..N?

Figure 1: Metamodel for dialogue act annotation.

3.2 DiAML abstract syntax

The abstract syntax of DiAML defines certain set-
theoretical structures (“DiAML annotation struc-
tures”) which contain all and exactly those ele-
ments that constitute the annotation of functional
segments in dialogue with communicative func-
tion information according to the metamodel of
Figure 1.

Definition of DiaML abstract syntax.

1. Conceptual inventory:

• a finite setParts = {P1, P2, ..., Pk}of
elements called ‘dialogue participants’;

• a finite setDim = {D1,D2, ...,DN } of
elements called ‘dimensions’;

• a finite set of sets DSF =
{DSF1,DSF2, ...,DSFN}, where
each elementDSFi is a finite setDSFi

= {Fi1, Fi2, ..., Fink
} of elements called

‘dimension-specific communicative
functions’;

• a finite setGPF = {F01, F02, ..., F0n}
of elements called ‘general-purpose
communicative functions’;

• a finite set QA ={A1...Ak} of elements
called ‘qualification aspects’, and a finte
set QV ={Q1, ..Qk} of finite sets of el-
ements called ‘qualifiers’;

2. Annotation construction rules:

• an annotation structure is a set of anno-
tation structures (recursively), or a pair
<σ, δ> whereσ is functional segment
and δ is a dialogue act structure, or a
pair <σ,∆> where σ is a functional
segment and∆ is a set of dialogue act
structures;

• a dialogue act structure is one of the fol-
lowing:

(a) a quadruple<S,A, d, f> where
S ∈ Part (the sender/speaker of the
dialogue act);A ⊂ Parts (the set of
addressees of the dialogue act);d is
a dimension (d ∈ Dim); andf is a
communicative function;

(b) a quintuple<S,A, d, f, δ′> with S,

A, d, andf as before, and whereδ′

is a dialogue act structure;
(c) a quintuple<S,A, d, f, σ′> with S,

A, d, andf as before, and whereσ′

is a functional segment.

• a communicative function is an element
of the set of (core) communicative func-
tions, i.e.f ∈ DSF ∪ GPF ; or a pair
<f, q> wheref ∈ DSF ∪ GPF andq

is a qualifier structure;

• a qualifier structureq is a list of pairs
<Ai, qik> with Ai ∈ QA andqik ∈ Qi,
Qi ∈ QV, such that no qualification as-
pect occurs more than once.

It may be observed that all the ingredients in the
metamodel occur in this specification, except that
of a dialogue. The absence of ‘dialogue’ is to be
expected, since a given dialogue as such does not
directly turn up in an annotation, only the func-
tional segments into which it is segmented. (In
the representation of annotations, these segments
contain information about how they relate to the
original dialogue.) The elements that may occur in
an annotation are the remaining three types of en-
tity (participant - in the possible roles of speaker,
addressee, or other; semantic dimension; commu-
nicative function); a functional dependency rela-
tion among dialogue acts; and a feedback relation
between a dialogue act and a functional segment.

The abstract syntax is not just a set-theoretical
formalization of the metamodel; it also refines the
metamodel in two respects. First, a distinction is
made in the SemAF/Dialogue acts project between
communicative functions which can only be used
to address a particular dimension (such as Turn
Grabbing and Turn Giving, which are specific to
the Turn Management dimension), and so-called
‘general-purpose function’ which can be used to
address any dimension (such as Inform, Request,
Answer..). This distinction is reflected in the ab-
stract syntax in the split of the set of communica-
tive functions, corresponding to an entity category
in the metamodel, into two sets (DSF andGPF ,
respectively, in the conceptual inventory). Sec-
ond, in order to capture the occurrence of emo-
tional, partial, modal and conditional variants of
dialogue acts, the SemAF/Dialogue project intro-
duces ‘qualifiers’ that may be attached to commu-
nicative functions, rather than treating these vari-
ants as separate communicative functions. This is
reflected in the abstract syntax by the occurrence
of qualifiers in the conceptual inventory, and the
possibility of attaching lists of qualifiers to com-
municative functions in the annotation construc-
tion rules.

3.3 DiAML ideal concrete syntax

The DiAML concrete syntax specifies an XML-
based ideal representation format for the abstract
syntax (see ISO CD 24617-2, 2009). Here we just
give a (slightly simplified) example.2

In this example we see a stretch of dialogue,
consisting of a question by participant P1 followed
by a turn unit contributed by participant P2, in re-
sponse P1’s question. P2’s utterance is segmented
into two overlapping functional segments: one
in the Auto-Feedback dimensions, with positive
value, and one in the Task dimension, with value
‘answer’ qualified as ‘uncertain’.

(5)

P1: Do you know what time the next
train to Utrecht leaves?

P2: The next train to Utrecht leaves
at 8:32.

AuFB The next train to Utrecht
[positiveAutoFeedback]

TA The next train to Utrecht leaves
I think at 8:32.[answer, uncertain]

Dialogue act annotations may be attached to pri-
mary dialogue data in a variety of ways. They
may be attached directly to stretches of speech, de-
fined by temporal begin- and end points, but often
they will be attached to structures at lower levels
of analysis and annotation, such as the output of a
tokenizer. Here we will assume that the relevant
functional segments are identified at another level
of XML representation, for instance in the way in
which information is attached to digital documents
according to TEI-ISO standard ISO 24610-1 (see
TEI, 2009). Following ISO practice, we will use
the term ‘markable’ to refer to the entities that an-
notations are attached to. For the example, we as-
sume that P1’s utterance is identified as the func-
tional segment ‘fs1’, and the two functional seg-
ments in P2’s turn as ‘fs2’ (in the Auto-Feedback
dimension) and ‘fs3’ (in the Task dimension). The
target attribute establishes the links with the
primary text.

We further assume that the dialogue fragment
considered here forms part of a digital document
in which the metadata contain the relevant infor-
mation that identifies the participants (‘p1’ and
‘p2’).

With these assumptions, the DiAML represen-
tation of the dialogue act annotation of (5) is as
follows:

2Incidentally, ISO document N442 rev 05 specifies two
alternative ideal representation formats, which are easily seen
to be convertible from one to the other.

<diaml xmlns:"http://www.iso.org/diaml/">
<dialogueAct xml:id="da1" target="#fs1"

sender="#p1" addressee="#p2"
communicativeFunction="setQuestion"
dimension="task"
conditionality="conditional"/>

<dialogueAct xml:id="da2" target="#fs2"
sender="#p2" addressee="#p1"
communicativeFunction="autoPositive"
dimension="autoFeedback"
feedbackDependenceTo="fs1"/>

<dialogueAct xml:id="da3" target="#fs2"
sender="#p2" addressee="#p1"
communicativeFunction="answer"
dimension="task"
functionalDependenceTo="da1"/>

</diaml>

The example shows that the representation is a
straightforward, transparent rendering of its infor-
mation content using the concepts of the abstract
syntax.

4 Illustration: annotation of time and
events

In this section we illustrate the use of the pro-
posed methodology by applying it to the design
of the ISO-TimeML language in the project Se-
mAF/Time. In particular, we describe the abstract
and concrete syntax and their relation, showing
that the concrete syntax as specified so far defines
a representation format that is not ideal, which
causes some problems. We also show how these
problems may be resolved by specifying an ideal
representation format.

A prototypical example of an annotation repre-
sentation in the ISO-TimeML format3 is the fol-
lowing, for the sentenceJohn left on 31 December
2007:

(6) <isoTimeML xmlns:
"http://www.iso.org/isoTimeML
xml:id="a1">
<EVENT xml:id="e1" target=
"#token2" pred="LEAVE" type=
"TRANSITION" class= "OCCURRENCE"
tense="PAST" aspect="NONE"
pos="VERB" vform="NONE" mood="NONE"
polarity="POS"/>
<SIGNAL xml:id="s2"
target="#token3"/>
<TIMEX3 xml:id="t1"
target="#token4 #token5 #token6
type="DATE" value="2007-12-31"/>
<TLINK eventID="#e1"
relatedToTime="#t1" signalID="#s1"
relType="IS INCLUDED"/>
</isoTimeML>

3All references to ISO-TimeML are based on the state
of the project as documented in ISO 264617-1:2009(E) from
September 2009.

4.1 ISO-TimeML abstract syntax

The abstract syntax of ISO-TimeML defines the
set-theoretical structures which constitute the in-
formation about time and events that may be con-
tained in annotations.

a. Conceptual inventory
The concepts which can be used to build ISO-
TimeML annotations fall into five categories, all
formed by finite sets of temporal and event-related
entities and relations, plus the concepts of real and
natural numbers. The categories of temporal and
event-related entities and relations are the follow-
ing:

• finite sets of elements called ‘event types’;
‘tenses’, ‘aspects’, ‘veracities’, and ‘signa-
tures’;

• finite sets of elements called ‘temporal rela-
tions’; ‘duration relations’; ‘numerical rela-
tions’: ‘event subordination relations’, and
‘aspectual relations’;

• a finite set of elements called ‘time zones’;

• finite sets of elements called ‘calendar years’;
‘calendar months’; ‘calendar weeks’; ‘calen-
dar day numbers’; (with 31 elements); ‘week
days’; and ‘clock times’;

• a finite set of elements called ‘temporal
units’.

b. Annotation construction rules
Annotation structures in ISO-TimeML consist of
entity structuresand link structures. Entity struc-
tures contain semantic information about a seg-
ment of source text; link structures describe se-
mantic relations between segments of source text.

An entity structure is a pair<s, a> consisting
of a stretch of source texts and an annotationa. A
link structure is a triple<e1, e2, r> consisting of
two entity structures and a relational element.

There are four types of entity structures<s, a>,
depending on the type ofa component, and seven
types of link structures. We describe here all four
types of entity structures and three of the link
structure types.

Entity structures:

1. An event structure is an 6-tuple
<e, t, a, σ, k, v> where e is a member

of the set of event types;t and a are a
tense and an aspect, respectively;σ is a
set-theoretical type, such asindividual object
or set of individual objects; k is a natural
number or a numerical predicate (likemore
than five; and v is a veracity (including
claimed truth or falsity);

2. An instant structure(‘point in time’) is ei-
ther a triple<time zone, date, clocktime>,
where a date is a time interval of one
day, defined by a calendar year, a calen-
dar month, and a calendar day number, or
a triple<time-amount structure, instant

structure, temporal relation> (“half an
hour before midnight”).

3. A time interval structureis a triple consisting
of a calendar year, a calendar month, and a
calendar day number;

4. The following set-theoretical structures are
interval structures:
(a) a calendar year; or a pair consisting of

a calendar year and a calendar month
(May 2010); or a triple: calendar year,
calendar month, and calendar day num-
ber;

(b) a pair<t1, t2> of two instant structures,
corresponding to the beginning and end
points of the interval;

(c) a triple <time-amount structure,
interval structure, temporal

relation> (“a week before Christ-
mas”);

(d) a triple<t1, t2, R> wheret1 andt2 are
either instant structures or interval struc-
tures, and whereR is a duration relation
(“from nine to five”).

5. A time-amount structureis a pair<n, u> or
a triple<R,n, u>, wheren is a real number,
R a numerical relation, andu a temporal unit.

Link structures:
1. A temporal anchoring structure is a triple

<event structure, interval structure,
temporal anchoring relation>, or a triple
<event structure, instant structure,
temporal anchoring relation>;

2. An event-duration structure is a triple
<event structure, time-amount

structure, duration relation>.
3. An aspectual structure is a triple<event

structure, event structure, aspectual

relation>.

4.2 ISO-TimeML semantics

4.2.1 Overview

The ISO-TimeML semantics as published in (ISO
DIS 24617-1, 2009) specifies the meanings of
the XML-expressions of its representation format,
which is a variant of TimeML (Pustejovsky et al.,
2005), through a translation into first-order logic.

By contrast, we provide here a semantics which
specifies the meanings of the annotation structures
defined by the abstract syntax, through a map-
ping from these structures into the language of
discourse representation structures (DRSs). These
structures form the semantic representation lan-
guage of Discourse Representation Theory (DRT;
Kamp & Reyle, 1993), and are known to be log-
ically equivalent to first-order logic expressions,
but to have advantages for compositional and in-
cremental construction of its representations from
natural language expressions.

Before presenting the details of this semantics,
we illustrate the way it works with a simple exam-
ple. Consider the sentence:

(7) John started to read at midnight

Using self-explanatory names for elements of the
conceptual inventory, the annotation structure for
this sentence would be as follows. The two events
that the text refers to (astart event and aread
event) give rise to two entity structurese1 ande2:

(8)
e1: <m1,<start, past, individual, positive>>
e2: <m2,<read, individual, positive>>

wherem1 is a markable that refers to the segment
started, andm2 a markable referring to the seg-
mentto read. The annotation structure for the time
of the start event is:

(9) e3 :< m3, < GMT, <>, 24 : 00 >>

where the markablem3 refers to the source text
segment“at midnight” , and the clock time is as-
sumed to be taken relative to Greenwich Mean
Time.

The two events are linked through an aspectual
relation, and the start event is temporally anchored
at the time that is mentioned. This is annotated by
means of the link structuresL1 andL2:

(10)
L1 : < e1, e2, initiates>
L2 : < e1, e3, at>

The annotation structure as a whole is the pairA1

= <E1, L1> whereE1 = {e1, e2, e3} and L1 =
{L1, L2}.

The semantics of this annotation structure can
be computed by mapping the components of the
annotation structure into small DRSs (see (11))
and merging these into one comprehensive DRS
(12).

The DRSs interpreting the components of
the annotation structure are the following (leav-
ing out the default values‘individual’ and
‘positive’ – see below for their treatment):

(11) e1 ;

e1
START(e1)
PAST(e1)

e2 ;

e2
READ(e2)

e3 ;

t1
CLOCKTIME(GMT, t1) = 24:00

L1 ;

e3 e4 x1, t2
THEME(e3, e4)
EVENT-TIME(e3) = t2
BEGIN(EVENT-TIME(e4)) = t2
AGENT(e3, x1)
AGENT(e4, x1)

L2 ;

e5 t3
EVENT-TIME(e5) = t3

The information in the link structureL1, which
describes how the two events are related to each
other, is expressed in the corresponding DRS by
means of a semantic relation (‘THEME’) between
the two events, plus conditions expressing that the
started event begins at the time of the start event,
and that both events are performed by the same
agent.

Merging the five DRSs in (11) results in the fol-
lowing DRS:

(12)

e1 e2 x1 t1
START(e1)
PAST(e1)
READ(e2)
THEME(e1, e2)
CLOCKTIME(GMT,t1) = 24:00
EVENT-TIME(e1) = t1
BEGIN(EVENT-TIME(e2)) = t1
AGENT(e1, x1)
AGENT(e2, x1)

This example might suggest that annotation
structures can be interpreted simply by translat-
ing the component entity and link structures into
DRSs and merging these. This is not true in gen-
eral, however, as the following example shows.

(13) John started to read at midnight. He enjoyed
it.

The annotation structure for this text is identi-
cal to that of (7), except for the additional entity
structure (14a) for theenjoyevent (with markable
m3 referring to the segmentenjoyed), with DRS-
interpretation (14b):

(14) a. e4 :<m3,<enjoy,past,individual,positive>>

b. e4:
e5
ENJOY(e5)
PAST(E5)

The DRSs (11) and (14b) can be merged in vari-
ous ways, one being the possibility where the dis-
course referent e4 in the DRS for L1 is unified with
the referent e5 in (14b), which leads to the follow-
ing DRS for the entire annotation structure:

(15)

e1 e2 e3 x1 t1
START(e1)
PAST(e1)
READ(e2)
ENJOY(e3)
THEME(e1, e3)
CLOCKTIME(GMT, t1) = 24:00
EVENT-TIME(e1) = t1
BEGIN(EVENT-TIME(e3)) = t1
AGENT(e1, x1)
AGENT(e3, x1)

This is not a correct interpretation of the annota-
tion structure, since it indicates an aspectual rela-
tion between thestart event and theenjoy event
rather than between thestart event and theread
event, and it is interesting to examine why this in-
terpretation is technically speaking possible. The
reason is that, different from the annotation struc-
tures, the DRSs corresponding to the annotation
structure components do not contain information
about the segments of source text that they apply
to. In particular, theL1 link structure contains
the entity structurese1 ande2, which in turn re-
fer to particular markables, but the DRS forL1
just says that there are two events, one initiating
the other, without referring to thestart, readand
enjoyevents as mentioned in the source text, and
as such the DRS does not really capture the link-
ing information which the link structureL1 con-
tained. The same goes for the temporal anchoring
structureL2, so in fact the DRSs in (11) and (14b)
could be merged in even weirder ways than (15).

The phenomenon that markable-related infor-
mation gets lost when translating annotation

structure components into logical representations
caused Bunt (2007) to propose a way of keeping
track of the identifiers of annotation structure com-
ponents when interpreting annotation structures in
a compositional way through their translation into
first-order logic. Other attempts to provide a for-
mal semantics for (ISO-) TimeML (Katz, 2007;
Lee, 2008; Pratt-Hartman, 2007) have also en-
countered this problem. Lee (2008) adopted the
solution proposed by Bunt (2007).

Here we propose a simpler solution, which con-
sists of including the information about the rela-
tion to markables within the DRSs. For example,
for the DRS-interpretation of the link structureL1

this leads to (16), where the ‘ANCHOR’ function
is used to specify the markable that the annotation
structure applies to.

(16)

e3 e4 x1, t2
ANCHOR(e3) = m2
ANCHOR(e4) = m4
AGENT(e3, x1)
AGENT(e4, x1)
THEME(e3, e4)
EVENT-TIME(e3) = t2
BEGIN(EVENT-TIME(e4)) =t2

By including the markable information not only
in link structure interpretations but also in the in-
terpretations of entity structures, the merging of
DRSs enforces the correct unification of the dis-
course referents and the generation of the intended
interpretation.

4.2.2 Interpretation function

The following four clauses define an interpretation
function Ia as a mapping from abstract anno-
tation structures to DRSs. Clause 1 defines the
interpretation of the elements of the conceptual
inventory. Clauses 2 and 3 recursively define
the interpretation of entity structures and link
structures, respectively. Clause 4 simply says
that the interpretation of an annotation structure
<E,L> is the merge of the interpretations of
its components. The annotation structure may
be ‘singly connected’, in the sense that the link
structures inL relate all the entity structures in
E to some particular member ofE (so the total
structure may be viewed as a connected graph). If
this is the case, then the application of the inter-
pretation to the link structures results in a single
DRS. If the annotation structure does not have
this property, as is the case for a text fragment
with unrelated events, such as:John called Mary

at around 3 o’clock. Peter did not show upthen
the interpretation of the link structures results in
a set of semantically independent DRSs; in view
of the conjunctive character of the components of
an annotation structure, it is appropriate to merge
these DRSs into a single DRS.

1. Elements from the conceptual inventory
The interpretation functionIa assigns an individ-
ual, predicate, or function name to the following
elements of the conceptual inventory, where, in the
interest of readability, we will indicate the inter-
pretationIa(αi) of an elementαi of the concep-
tual inventory asα′

i:

• event types (ei), tenses (tj), aspects (am), and
cardinalities (kn);

• temporal relations, time measurement func-
tions, temporal units, duration relations, nu-
merical relations, event subordination rela-
tions, and aspectual relations;

• time zonesZi (interpreted as functions which
map the time line onto pairs consisting of a
date and a clock time);

• calendar years, calendar months, calendar
day numbers;

• real numbers, whereIa(r) will be its usual
string name (like ‘95.743’).

Veracities and set-theoretic types are not
represented as such in DRS conditions, but are
interpreted through the different interpretations
of event annotations, depending on the values of
these elements in the annotation. For instance,
an entity structure with negative veracity will be
interpreted as the negation of the representation
which represents the same event structure with
positive polarity.

2. Entity structures
In the clauses for entity structure interpretation we
will usem(e) to abbreviate “ANCHOR(e) = m”.

2.1 Event annotations:
Ia(< m, < e, t, a, indiv, pos >) =

= <{e}, {m(e),<e′(e), t′(e), a′(e)}>>,

or

e

m(e)
e’(e)
t’(e)
a’(e)

Ia(<< m, e, t, a, indiv, neg >>) =
= ¬ < {e}, {m(e),<e′(e), t′(e), a′(e))} >,

or ¬

e

m(e)
e’(e)
t’(e)
a’(e)

Ia(< e, t, a, set, k, pos >) =
= << E >, {m(E), k′(E)}, << e1 >, < e1 ∈ E >→
{<<>, e′(e1), t

′(e1), a
′(e1)} >} >,

or

E
m(e)
k’(E)

e1

e1 ∈ E
⇒

e’(e1)
t’(e)
a’(e)

Ia(< e, t, a, set, k, neg >) =
= ¬ << E >, {m(E),<< e1 >, < e1 ∈ E >→

<<>, {< e′(e1), , t
′(e1), a

′(e1)} >} >

2.2 Interval annotations:
Ia(< t1, t2 >) =

= << t, t1, t2 >,{begin(t) = t1, end(t) = t2} >

Ia(<< n, u >, T1,R > =
= << t >, {R′(t, T ′

1) ∧ distance((t, T1), u
′) = n′} >

Ia(< z, y) = <<, t >, {YEAR(t) ∧ calyear(t, z′) = y′} >

Ia(< z, y, m >) =
= <<, t >, {MONTH(t) ∧ calyear(t, z′) = y′

∧ calmonth(t, z′) = m′} >

Ia(< z, y, m, d >) =
= <<, t >, {DAY(t) ∧ calyear(t, z′) = y′

∧ calmonth(t, z′) = m′ ∧ caldaynum(t, z′) = d′} >

2.3 Instant annotations:
Ia(< z, y, m, d, τ >) =

= << t >, {calyear(t, z′) = y′ ∧ calmonth(t, z′) = m′

∧ caldaynum(t, z′) = d′ ∧ clocktime(t, z′) = τ ′} >

Ia(<< n, u >, t1, R > =
= << t >, {R′(t, t1) ∧ distance((t, t1), u′) = n′} >

2.4 Time-amount annotations:
Ia(< n, u >) = << x >, {length(x, u′) = n′} >

Ia(< R, n, u >) = <<x>, {R′(length(x, u′), n′)}>

3. Link structures:

3.1 Temporal anchoring structures:

Ia(< ǫ, τ, R >) = Ia(ǫ) ⊕ Ia(τ) ⊕
<< x, y >, {R′(event-time(x), y)} >

3.2 Event duration structures:

Ia(< ǫ, < nu >>) =
= Ia(ǫ)⊕ << e >, {length(event-time(e), u′) = n′} >

3.3 Aspectual structures:
Ia(< ǫ1, ǫ2, A >) = Ia(ǫ1) ⊕ Ia(ǫ1) ⊕

<< e1.e2 >, {a′(e1, e2)} >)

4. Annotation structures ;
Ia(<E,L> = ⊕({e′|e′ = Ia(e) for somee ∈ E} ∪

{r′|r′ = Ia(r) for somer ∈ L})

Applied to example (13), we obtain the following
two DRSs representing the meaning of the anno-
tations in the link structures L1 and L2:

(17)

L1: Ia(< ǫ1, ǫ2, initiates >) =
= Ia(ǫ1) ⊕ Ia(ǫ2) ⊕ <<e1, e2>,
{initiate(e1, e2)}>) =
= <<e1>, {start(e1), past(e1) }> ⊕
<<e2>, {read(e2)}> ⊕
<<e1, e2>, {initiate(e1, e2)}> =
= <<e1, e2>, {start(e1), past(e1), read(e2),
initiate(e1, e2)}>

(18)

L2: Ia(< ǫ1, τ1, at>) =
= Ia(ǫ1) ⊕ Ia(τ1) ⊕

<<x, y >, {R′(event-time(x), y)}> =
= <<ee>, {start(e), past(e1)}> oplus

<<t1>, {clocktime(t1) = 24:00}> ⊕
<<x, y>, {R′(event-time(x), y)}> =

= <<e1, t1>, {start(e1), past(e1),
clocktime(t1) = 24:00, event-time(e1) = t1)}>

These DRSs are logically equivalent to the first-
order logic formulas in (19):

(19) a. Ia(L1) = ∃e1.START(e1) ∧ PAST(e1) ∧ ∃e2.
READ(e2) ∧ THEME(e1, e2) ∧ INITIATE (e1, e2)

b. Ia(L2) = ∃e. START(e) ∧ PAST(e) ∧ ∃t.
clocktime(t) = 24 : 0 ∧ EVENT-TIME(e) = t

4.3 Concrete Syntax

The concrete syntax of ISO-TimeML (see ISO,
2009) specifies a format for representing annota-
tion structures in XML, as illustrated in example
(7). This format is a slight adaptation of that of
TimeML, and has not been designed as an ideal
representation format for the abstract syntax.

5 Representation problems

We consider two kinds of problems in the current
definition of ISO-TimeML4: (1) those relating to
inaccurate representation of annotation structures;
(2) those relating to the difficulty of separating in-
formation related to time and events from general
semantic information concerning e.g. quantifica-
tion and modality, for which no general approach
to their annotation is currently available.

4See footnote 3.

5.1 Recurring events

Reference to a recurring event, as inJohn called
twice is represented in ISO-TimeML as follows
(slightly simplified):

(20) <EVENT id="e1" tense="PAST"/ >
<TIMEX3 id="t1" freq="2X"/ >
<TLINK eventID="#e1"
relatedToTime="#t1"
relType="DURING"/ >

There are several problems with this representa-
tion. First, theEVENT part refers to an evente1,
temporally linked to a temporal ‘entity’ “twice”,
while the source text refers to two events. Sec-
ond, what kind of entity is “twice”? The ISO-
TimeML concrete syntax uses theTIMEX3 tag for
all temporal entities, and distinguishes these en-
tities by means of thetype attribute intoperi-
ods, dates, times, measures, andsets. The alleged
entity “twice” fits none of these types. In fact,
“twice” should not be considered as a temporal en-
tity at all; it is rather a number, counting how many
instances of a certain type of event occurred. A re-
lated problem is the use of the “DURING” relation
between the event and the entity “twice”. The rela-
tion between events and the number of their occur-
rence is nottemporalin nature, and “DURING” is
therefore not an appropriate kind of relation to ap-
ply.

The abstract syntax takes a different conceptual
view. It does not include entities like ‘twice’; in-
stead, the interpretation oftwice as a number is
captured by thek (for ‘cardinality’) component
in an event structure. Second, where the ISO-
TimeML format has no way of encoding a refer-
ence in a source text to aset of events(as opposed
to a single event), the abstract syntax has the ‘sig-
nature’ element in an event structure for indicating
whether an individual event or a set of events is
considered.

We see here that certain inadequacies in the rep-
resentations occur due to an imperfect match be-
tween distinctions made in the abstract syntax and
those expressed in the concrete representation for-
mat. We therefore propose the use of a represen-
tation format that does not suffer from such im-
perfections, an ideal representation format. In the
next subsection we outline such a format for the
abstract syntax given above.

5.2 An ideal representation format

We define a concrete XML-based syntax for the
annotation structures defined by the ISO-TimeML

abstract syntax, and call this representation format
the ICS-1 format.

Recall that an annotation structure is a pair
<E,L> consisting of a setE of entity structures,
and a setL of link structures that link (some of)
the entity structures together. The building blocks
of the various types of entity structures are the el-
ements of temporal and event-related categories
specified by the conceptual inventory.

5.2.1 Representation of conceptual inventory
items

Event types:

• attribute type; values: READ,
TEACH, CALL, SLEEP,
ENJOY,... (any event type dis-
tinguished in a given inventory or
ontology of events);

• tenses: attributetense; values:
PRESENT, PAST, FUTURE,
IMPERFECT, NONE;

• aspects: attributeaspect; values:
PROGRESSIVE, PERFECTIVE,
IMPERFECTIVE,..;

• aspectual relations: attribute:
aspectRel; values:INITIATE
TERMINATE, CONTINUE,
CULMINATE, REINITIATE;

• duration relations: attribute:
durationRel; values:THROUGH,
WHILE, ..;

• event subordination relations: attribute:
eventSubordRel; values:THEME;

Temporal entities:

• time zones: attributetimeZone; val-
uesCET, GMT, EST,...;

• calendar years: attributecalYear; val-
ues2010, 2009,...;

• calendar months: attributecalMonth;
values JANUARY, FEBRUARY,
MARCH,..., DECEMBER;

• calendar day numbers: attribute
calDayNum; values 1, 2, 3,..., 31

• clock times: attributeclockTime; val-
ues 00:00, 00:01, 00:02, 00:59, 01:00,
01:01, ..., 23:59;

• temporal relations: attribute:
tempRel; values: AFTER,
BEFORE, DURING,...;

• time measurement functions: at-
tribute length; values: see temporal
amounts;

• units of time: attribute:unit; values:
SECOND, MINUTE, HOUR,
DAY, WEEK, MONTH, YEAR, DECADE,
CENTURY,..

Numerical relations:

• attribute:numRel; values:"LESS
THAN", "LESS OR EQUAL THAN"

Real numbers:

• attribute numeral; values: all real
numbers, as represented by their usual
string name (like ‘5.14’).

5.2.2 Representation of annotation structures

The collection of entity structures and link struc-
tures which together form an annotation structure
is represented in ICS-1 format as a list (in arbitrary
order) of the representations of the entity struc-
tures and link structures.

a. Entity structures
An entity structure is a pair<m,a> wherem is
a markable anda is an annotation which is ei-
ther an event structure, a time interval structure,
a time instant structure, or a time amount struc-
ture. For each type of entity structure we intro-
duce an XML element, so this gives the element
types EVENT, PERIOD, INSTANT, DATE,
andTIME AMOUNT. These annotations are alln-
tuples of elements from the classes of the con-
ceptual inventory. For example, an event struc-
ture is a 6-tuple consisting of an event type, a
tense, an aspect, a signature, a cardinality, and a
veracity. The ICS-1 format reflects this by defin-
ing 6 attributes forEVENT elements, whose val-
ues represent the elements of the 6-tuples. More
generally, for each type of entity structure we de-
fine attributes for the corresponding XML element
such that the components of each type of entity
structures have a one-one correspondence with at-
tribute values in the ICS-representation. For each
XML element corresponding to an entity struc-
ture we add (1) a unique identifier, as the value of
the special attributexml:id, and (2) an attribute
anchor which has a markablem as its value, in-
dicating how the representation is anchored in the
source text.

For example, the event structure in the sentence
(21a), tokenized and with the markable ‘m1’ de-
fined as in (21b), is represented as in (21c):
(21) a.Mary laughed.

b. m1= token2: ’laughed’
c. <isoTmeML-ICS1rep xml:id="a1">

<EVENT xml:id="e1" anchor="#m1"
type="LAUGH"
tense="PAST" aspect="NONE"
veracity="POSITIVE"
signature="INDIVIDUAL"
cardinality="NONE" />
</isoTmeML-ICS1rep>

Compared to the current ISO-TimeML repre-
sentation, the ICS-1 representation is simplified in
certain respects, and has a different treatment of
event quantification and of representing the length
of temporal intervals. The main simplifications are
the following:

• ISO-TimeML uses a double classification of
kinds of events; on the one hand a 7-way clas-
sification inherited from TimeML, expressed
by the values of the attributeclass, and
on the other hand a 3-way classification into
processes, transitions, and states expressed
by the three possible values of the attribute
type. The value of the attributepred is
used to indicate the event-type of which a to-
ken is considered in the annotation of a cer-
tain event; this attribute is renamedtype
here. The use of an attribute with such values,
is only useful if there is information available
about the entities denoted by these values.
For instance, the use of aLAUGH event-type,
as in example (21), typically presupposes the
information that laughing is an event of type
‘PROCESS’, and in the TimeML classifi-
cation is an‘OCCURRENCE’. It therefore
seems redundant to specify these classifica-
tions in annotations. We therefore left out
these attributes. This gives us the opportu-
nity to rename the attributepred to type,
which seems a more appropriate name.

• (ISO-)TimeML uses an attributepos to an-
notate the part of speech of the expression at
which the annotation is anchored; an attribute
vform to indicate in the case of a verbal ex-
pression whether it has infinitive, gerundive,
or participle form; and an attributemood to
indicate whether a verbal expression has sub-
junctive mood. Since this is syntactic rather
than semantic information, we leave it out.

The ideal concrete syntax uses the attributes
signature, andcardinality, which do not
correspond to attributes for event annotations in
(ISO-)TimeML, for the representation of repeated
events and number of repetitions, and of quanti-
fied relations between events or between events
and time intervals or instants. This is discussed
below.

b. Link structures
For each type of link structure defined by the ab-
stract syntax we introduce an XML element, just
as we did for the types of entity structure. Link
structures consist of two entity structures and a
relation, so for each type of link structure we in-
troduce three attributes, two having pointer values
for referring to the entity structure representations,
and one whose value is the corresponding relation.

For the anchoring of an event in time, for is-
ntance, we introduce theTIME ANCHORING el-
ement with attributes for the anchored event and
the anchor time, respectively, and an attribute
relType specifying in what way the event is an-
chored (e.g. by the relation"AT" or by the relation
"DURING"), as illustrated in example (22). In
the abstract syntax there are no link structures for
establishing relations between link structures (but
only relations between entity structures), therefore
link structure representations do not need a unique
XML identifier, in contrast to entity structure rep-
resentations.

The ICS-1 expression (22c) represents the an-
notation of example sentence (7), repeated here
as (22a), tokenized and with markables defined in
terms of tokens as in (22b). Attributes which have
the value"NONE" or a (different) default value
(see below) are not shown here.

(22) a. John started to read at midnight.

b. m1= token2: ‘started’, m2 = token3 token4: ’to
read’, m3 = token5: ’at’, m = token6: ’midnight’

c. <isoTimeML ICS1rep xml:id="a1">
<EVENT xml:id="e1" anchor=’’#m1’’
type ="START" tense=PAST
signature="INDIVIDUAL">
<EVENT xml:id="e2" anchor="#m2"
type ="READ" tense="NONE"
signature="INDIVIDUAL">
<INSTANT xml:id="t1" anchor="#m4"
clockTime=’24:00’>
<TIME ANCHORING anchor="#m3"
anchoredEvent="#e1"
anchorTime="#t1" relType=’AT’>
</isoTimeML ICS1rep>

Using the ICS-1 format, the sentenceJohn
called twiceis represented as follows:
(23) <id="e1" type="CALL" tense="PAST"

signature="SET" cardinality="2"/>

This representation says simply that twocall-
events occurred in the past.

The ISO-TimeML representation (20) has yet
another unsatisfactory feature, namely the use of
the attributefreq with value "2X". If the at-
tributefreq is to capture the number of times a
certain type of event occurs, then the value should
be a numerical expression, and the use of a string
containing the code ”X” (for ”times”) makes no
sense. Second, the number of times an event is re-
peated is not afrequency; a frequency is the num-
ber of times something occurs within a period of a
certain length, liketwice an hour.

A sentence with a genuine frequency descrip-
tion, such asJohn calls home twice a day, in fact
describes a quantified relation between a set of re-
curring events and the set of periods in which they
occur. In ISO-TimeML, such a sentence is repre-
sented as shown in (24), leaving out attributes and
values of no particular interest here.
(24) <EVENT id="e1" pred="CALL"

tense="NONE"/>
<TIMEX3 id="t1" freq="2X"/>
<TIMEX3 id="t2" type="SET"
value="P1D" quant="EVERY">
<=TLINK eventID="#e1"
relatedToTime="#t2" />
relType="DURING"/>

The criticism of the representation (20) ofJohn
called twicealso applies in this case; moreover,
the temporal quantification is not represented cor-
rectly. Problematic is that theEVENT element
does not correspond to a set of events; there is no
way in ISO-TimeML to represent a set of events,
and that theTIMEX3 element refers to a set of en-
tities which are periods of a length of 1 day, ac-
cording to the value of thevalue attribute. (In
"P1D", ‘P’ stands for ‘period’ and ‘D’ for day;
this is the ISO-TimeML way of describing a one-
day period.) This is not correct, for suppose John
has the habit of calling at 10:00 a.m. and at 7:00
p.m., then in the one-day period from 8:00 p.m. to
8:00 a.m. John doesn’t call at all.

Viewed as a quantification, the sentence de-
scribes a quantified relation between a set of
events and a set of days (in the sense of periods
starting at 0:00 and ending 24 hours later at mid-
night). This view underlies the ICS-1 representa-
tion of this sentence, shown in (25).

(25) <EVENT id="e1" type="CALL"
tense="NONE"
signature="SET"/>
<PERIOD id="t1"/> type="DAY"
signature="SET"/>
<TIME ANCHORING anchoredEvent="#e1"
anchorTime="#t1"
relType="INCLUDED IN"/>
eventDistr="INDIVIDUAL"
timeDistr="INDIVIDUAL"
eventQuant="2" timeQuant=EVERY"/>

This representation can be read as saying that a
set ofcall events is anchored timewise in a set of
days, such that the individual events are anchored
at individual days, where every day includes a time
anchor for two of these events. This is exactly
what we want.

6 Discussion and Conclusions

In this paper we have presented a new methodol-
ogy for the design of languages for semantic anno-
tation, bringing three innovations. First, we have
added a third component to the usual two compo-
nents of a language definition: a syntax that spec-
ifies the set of expressions of the language, and a
semantics that specifies for each expression what
it means. The third component, anabstract syntax,
specifies the categories of information that the an-
notations expressed in the language may contain,
and the ways in which elements of these categories
may be combined into annotation structures. This
specification is in set-theoretical terms, indepen-
dent of any representation format. What is tradi-
tionally called a syntax, by contrast, is in terms of
a particular representation format. This distinction
is especially important in the context of defining
annotation standards, since according to the Lin-
guistic Annotation Framework, standards should
be defined at an abstract level, independent of any
representation format.

Second, we have shown the possibility to define
the semantics of an annotation language as a spec-
ification of the meanings of the annotation struc-
tures defined by the abstract syntax, rather than as
a description of the meanings of representations
defined by a concrete syntax. This has the advan-
tage that any representation format which defines a
rendering of the structures defined by the abstract
syntax inherits the semantics of the abstract syn-
tax. For the case of ISO-TimeML we have shown
that the meanings of the annotation structures can
be derived in a straightforward manner by keeping
track in the DRSs of the information in the annota-
tions concerning their anchoring to the source text.

Third, we have introduced the notion of an
ideal representation formatwhere each annota-
tion structure defined by the abstract syntax has
a unique rendering in that format, and each repre-
sentation is the rendering of a uniquely determined
annotation structure. It is easy to see that any two
ideal representation formats can be converted into
each other through a strictly meaning-preserving
mapping.

Is an ideal representation format ‘ideal’ in the
sense of note being realistically achievable? We
have shown that an ideal XML-representation for-
mat can be defined for a given abstract syntax by
systematically introducing XML elements for en-
tity types and relational types. In fact, being ideal
should be a requirement ofanysatisfactory repre-
sentation format, since a format which is not ideal
is either unable to represent all the semantic dis-
tinctions that are made by the abstract syntax, or
else it introduces irrelevant parts, which have no
semantic basis.

Besides being theoretically important, ideal rep-
resentation formats have the advantages of being
maximally simple, only representing the concep-
tual distinctions made in the abstract syntax, and
being optimally transparent, allowing a simple se-
mantic interpretation.

We have illustrated this for the design of the Di-
AML language for annotating dialogue recordings
with dialogue act information, and for the design
of the ISO-TimeML language for annotating doc-
uments with information about time and events. In
the latter case we have noted a number of represen-
tation problems in the ISO-TimeML in its current
state, and pointed out how the language may be
improved. This shows that the approach can be of
practical value for improving the design of anno-
tation languages.

The introduction of an abstract syntax as a
information-theoretic layer in the definition of a
semantic annotation language supports a princi-
pled view on the information that annotations are
intended to capture, more than is encouraged by
the traditional approach where a representation
format is defined for which a semantics is defined
(if a semantics is defined at all). Such a princi-
pled view gives us a handle on general issues in se-
mantic annotation such as quantification and mod-
ification. This opens up interesting possibilities
for developing satisfactory ways to annotate nat-
ural language expressions which display such om-

nipresent phenomena as quantification and modi-
fication .

Acknowledgments

I would like to thank James Pustejovsky and Kiy-
ong Lee for many in-depth discussions of issues in
the temporal and event-related semantics of natu-
ral language.

References

Bunt, H. (2007). The Semantics of Semantic Annota-
tion. In Proceedings of the 21st Pacific Asia Con-
ference on Language, Information and Computation
(PACLIC21), pages 13–29, Korean Society for Lan-
guage and Information.

Bunt, H. (forthc.). Introducing Abstract Syntax and Se-
mantics in Languages for Semantic Annotation.

Bunt, H. and Romary, L. (2002). Towards Multi-
modal Content Representation. In Choi, K. S., ed-
itor, Proceedings of LREC 2002, Workshop on In-
ternational Standards of Terminology and Language
Resources Management, pages 54–60, Las Palmas.
Paris: ELRA.

Burnard, L. and Bauman, S. (2007).TEI P5: Guide-
lines for Electronic Text Encoding and Interchange.
TEI Consortium.

Clark, H. (1996).Using language. Cornell University
Press, Cambridge, UK.

Ide, N. and Romary, L. (2004). International Stan-
dard for a Linguistic Annotation Framework.Nat-
ural Language Engineering, 10:211–225.

ISO (2009a).Language Resource Management - Lin-
guistic Annotation Framework (LAF). ISO, Geneva.
ISO document ISO/DIS 24612:2009.

ISO (2009b). Language Resource Management - Se-
mantic Annotation Framework (SemAF) - Part 1:
Time and Events. Secretariat KATS. ISO Interna-
tional Standard 24617-1:2009(E)), 11 October 2009.

ISO (2009c). Language Resource Management - Se-
mantic Annotation Framework (SemAF) - Part 2:
Dialogue Acts. ISO, Geneva. ISO document
ISO/CD 24617-2-2009-10-05.

Kamp, H. and Reyle, U. (1993).From Discourse to
Logic. Kluwer Academic Publishers, Dordrecht.

Katz, G. (2007). Towards a Denotatial Semantics for
TimeML. In Schilder, F., Katz, G., and Pustejovsky,
J., editors,Annotation, Extraction, and Reasoning
about Time and Events. Springer, Dordrecht.

Lee, K. (2008). Against a Davidsonian Analysis of
Copula Sentences. In Kadowaki, M. and Kawahara,
S., editors,NELS 33 Proceedings.

Pratt-Hartmann, I. (2007). From TimeML to Interval
Temporal Logic. InProceedings of the Seventh In-
ternational Workshop on Computational Semantics
(IWCS-7), pages 166–180, Tilburg, Netherlands.

Pustejovsky, J., Castano, J., Ingria, R., Gaizauskas, R.,
Katz, G., Saurı́, R., and Setzer, A. (2003). TimeML:
Robust Specification of Event and Temporal Ex-
pressions in Text. InProceedings of the Fifth In-
ternational Workshop on Computational Semantics
(IWCS-5), pages 337–353, Tilburg, Netherlands.

Pustejovsky, J., Ingria, R., Saurı́, R., Gastano, J.,
Littman, J., Gaizauskas, R., Setzer, A., Katz, G.,
and Habel, C. (2005). The Specification Lan-
guage TimeML. In Mani, I., Pustejovsky, J., and
Gaizauskas, R., editors,The Language of Time. Ox-
ford University Press, Oxford.

Pustejovsky, J., Knippen, R., Littman, J., and Saurı́, R.
(2007). Temporal and Event Information in Natu-
ral Language Text. In Bunt, H. and Muskens, R.,
editors,Computing Meaning, volume 3, pages 301–
346. Springer, Berlin.

TEI (2009). TEI P5: Guidelines for Electronic Text
Encoding and Interchange. Lou Burnard and Syd
Bauman, editors. Text Encoding Initiative. Also
ISO standard 14610.

